
VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Problem A. xuanquang1999 and the Problem Selection Process
We define position i as beautiful if ai < ai+1 (meaning we can perform a transformation at position i).

Suppose we perform a transformation at beautiful position i. Consider the four integers ai−1, ai, ai+1, ai+2.
After the transformation, we have three integers ai−1, ai +ai+1, ai+2. We have the following observations:

• If i − 1 is a beautiful position before the transformation (ai−1 < ai), then this position remains
beautiful after the transformation (since ai−1 < ai + ai+1).

• If i+ 1 is a beautiful position before the transformation (ai+1 < ai+2), then this position may not
remain beautiful after the transformation (since ai + ai+1 is not necessarily smaller than ai+2).

• Positions j before the element ai−1 and after the element ai+2 will still maintain their beauty (or
non-beauty) property, as they are not affected by the transformation.

Therefore, the best way to perform the transformation is always to choose the last beautiful position to
perform the transformation (so that we do not lose any beautiful positions). Additionally, since there are
no more beautiful positions appearing after the transformation position, we only need to iterate i from
n− 1 backwards to 1, and perform the transformation if position i is beautiful.

Complexity: O(n).

Problem B. TrungNotChung and the Competition Preparation
The answer is “NO” if there exists a pair of indices i, j (i 6= j) that satisfies either of the following
conditions:

• pi = pj and qi 6= qj .

• pi 6= pj and qi = qj .

Conversely, for k being the number of distinct pairs (p, q), there always exists an answer with the smallest
c equal to k+ 1. For the chosen desk manufacturers, tpi can take any value from 1 to k such that no two
manufacturers have desks of the same height. The chosen monitor manufacturers will purchase monitors
with heights: mqi = k + 1− tpi .
For the desk and monitor manufacturers that no contestant chooses, the height of the monitors and desks
purchased from these manufacturers can take any value from k+1 to 109 such that no two manufacturers
have desks or monitors of the same height.

Problem C. ngfam the Navigator
From the definition of the problem, we can see that a vertex u is called a centroid if the subtree rooted
at u does not have a child v (v 6= u) such that the subtree rooted at v has at least n

2 vertices.

Subtask 1: n ≤ 100.

In this subtask, we can use the adj operation to reconstruct the tree. We iterate through each vertex
from 2 to n. For each vertex u in the iteration, we find the path from the current vertex (denoted as r)
to u by continuously querying:

1. adj u (returns k)

2. move k

3. Assign r = k

Page 1 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

At each move step, we can add (u, k) to the edge list of the graph. After obtaining the graph, we can
iterate through all vertices and check the centroid condition as described and move to that vertex.

Number of required queries: O(n2).

Subtask 2: n ≤ 1000.

With the limit of this subtask, we realize that reconstructing the original tree is not feasible. Therefore,
we need an approach to reach the centroid without relying on the graph structure.

Using the observation from the previous section, if the current vertex r is not a centroid, we always have
at least 1

2 chance to find a randomly chosen vertex that belongs to the subtree rooted at the centroid.

Thus, we can use a random algorithm, sampling m vertices that have not been chosen and check if the
subtree containing those vertices has at least n

2 vertices. If it does, we move to that vertex.

Observation: The distance from any vertex in the tree to the centroid is always at most n
2 . It is easy to

see that if this distance is greater than n
2 , then the subtree containing r in the centroid tree contains all

the vertices on the path, which is equivalent to at least n
2 vertices.

Combining the random approach and the above observation, we can repeat the following steps until
reaching the centroid:

1. Sample m vertices, for each vertex, query adj and subtree to check if the subtree contains the
centroid.

2. If there exists a subtree containing the centroid, use the move operation to move to that subtree.

The algorithm has a complexity of O(mn+ n
2) with an error rate of each step being 2−m.

To ensure accuracy, we need at least m = 30 to achieve a small error rate, but it exceeds the problem’s
limit.

At this point, we can optimize in various ways, one of which is:

1. After each move, gradually remove the vertices that have been traversed from the sampling list.
Each time the sampling list decreases by 2, we decrease m by 1.

2. Instead of querying subtree for all m samples, we query the entire subtree from adj and only query
subtree for the subtree that contains the most samples.

Subtask 3: n ≤ 10000.

Solution 1: Improved random algorithm.

We observe that instead of performing sampling after each step to find the next direction, we can use a
target vertex to perform multiple steps at once.

1. At each moment when we don’t have a direction, we perform sampling until we find a direction (a
vertex target such that the subtree containing target has at least n

2 vertices).

2. Move towards target until the subtree containing target no longer has at least n
2 vertices.

Thus, for each move step, we will perform 3 operations: [adj, subtree, move], where subtree is used to
ensure that we do not move in the wrong subtree. Therefore, we spend a maximum of 3n

2 operations for
movement.

Thus, we have 555 operations for sampling and ensure that we always find the centroid with a very small
error probability.

Solution 2: Solution by one of our testers

Page 2 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Observation: For each root u that is not a centroid, there exists one and only one subtree containing
the centroid. From this, we always know for sure that the subtree containing the centroid is the subtree
in the root u tree that contains the most vertices.

Based on the above observation, we have the following algorithm:

1. List the results of the subtree query for all vertices in the root 1 tree.

2. Sort the list of vertices in descending order based on the query results, denoting the resulting vertex
sequence as a1 = 1, a2, ..., an.

3. Move from a1 to a2, a2 to a3, ..., ak−1 to ak with ak being the last vertex with a query result greater
than or equal to n

2 . And ak is also the centroid we need to find.

Problem D. darkkcyan and Contestant Positions Planning
Subtask 1: m ≤ 5000.

In this subtask, we are allowed to recalculate the answer in O(m). For convenience, we add a fictive
network cable connecting 0 and n+ 1.

We call network cable x a child of y if y is the network cable with the largest uy satisfying
uy < ux ≤ vx < vy.

Consider a network cable y with children x1, x2, . . . , xk, then the number of additional cables that can be

connected as children of y is cnty =

⌊
vy − uy − 1−

∑k
i=1(vxi − uxi + 1)

2

⌋
. The answer to the problem is

exactly the sum of all cnty for all available network cables.

We sort the network cables in increasing order of their left endpoints. We maintain a stack of nested
network cables. When adding a cable x, first we remove all cables y at the top of the stack with vy < ux.
After this step, the network cable y at the top of the stack (if any) will be the parent of x. We add x to
the stack and continue this process with the remaining cables.

Subtask 2: ui > ui+1 for all 1 ≤ i < m.

In this subtask, the parent of a cable can change at most once. We will use a std::set S to store the
cables that are children of (0, n + 1). When adding (ui, vi), we perform a binary search on S (using the
lower_bound function) to find the children of this cable, then remove them and add (ui, vi) to S.

Subtask 3: No additional constraints.

Considering the cables after adding the m-th cable, we construct a tree T representing the parent-child
relationships of the cables. Instead of adding the cables to the set one by one, we will do the opposite
and gradually remove the cables from m to 1. In this process, we need to know the current parent of a
cable in order to update the result. It is easy to see that the parent to find is the nearest ancestor not
yet removed in the tree T .

Here, we present a solution using DSU (Disjoint Sets Union). Initialize a DSU with m vertices corre-
sponding to the cables. Let par[x] be the parent cable of a cable x in the tree T . Traverse x from m to
1, perform the union of the edge par[x] − x in the DSU, and the current parent of x will be the vertex
with the lowest depth in the connected component containing x.

Page 3 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Note that we need to update the cnt array after each operation in subtask 2 and 3.

Problem E. lanhf and the VNOI Cup T-Shirt Distribution Pro-
cess
First observe that, with a ranking table consisting of m rounds, the organizers will choose the number k
as follows:

• Let r[i] be the best rank of contestant i after m rounds, and c[j] be the number of contestants i
satisfying r[i] = j.

• The organizers will choose the largest number k such that c[1] + c[2] + . . .+ c[k] ≤ s.

Subtask 1: n,m ≤ 8.

In this subtask, we only need to iterate through all n! possible scenarios and calculate the best rank of
all contestants.

Subtask 2: n,m ≤ 500.

We observe that the condition for contestant i to receive a prize after m rounds is that there are at least
n− s other contestants j such that r[j] > r[i].

Let r2[j] be the best rank of contestant i after m− 1 rounds. We see that there are three possible cases
in round m:

1. Contestant i achieves rank x < r2[i]:

Assuming there are a contestants j with r2[j] > x (excluding contestant i), then there must be at
least n− s contestants among them who achieve ranks higher than x in round m.

We can consider this problem as follows: given n people and n seats, with a bad people and n−a−1
good people. Knowing that seat x is already taken, arrange the remaining n− 1 people in the seats
in such a way that exactly b bad people sit to the right of seat x.

The answer for this case is a! · (n− a− 1)! ·
a∑

b=n−s

(
n−x
b

)
·
(
x−1
a−b
)
.

2. Contestant i achieves rank x = r2[i]:

Assuming there are a contestants j with r2[j] > r2[i], then there must be at least n− s contestants
among them who achieve ranks higher than r2[i] in round m.

Therefore, similar to case 1, the answer for this case is a! · (n− a− 1)! ·
a∑

b=n−s

(
n−x
b

)
·
(
x−1
a−b
)
.

3. Contestant i achieves rank x > r2[i]:

Similar to case 2, we assume there are a contestants j with r2[j] > r2[i], then there must be at least
n− s contestants among them who achieve ranks higher than r2[i] in round m.

Now, our problem changes a bit: given n people and n seats, with a bad people and n− a− 1 good
people. Knowing that seat x is already taken, arrange the remaining n − 1 people in the seats in
such a way that exactly b bad people sit to the right of seat r2[i].

The answer for this case is a! · (n− a− 1)! ·
a∑

b=n−s

(n−r2[i]−1
b

)
·
(r2[i]
a−b
)
.

We iterate through all contestants, then iterate through the possible ranks in round m of contestant i,
and compute the combinations. Therefore, the complexity of this algorithm is O(n3).

Subtask 3: n,m ≤ 2000.

We will consider optimizations for each case:

Page 4 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

1. Contestant i achieves rank x < r2[i]:

From the solution of subtask 2, we can see that the calculation formula does not depend on r2[i],
so we can optimize this case using prefix sums instead of iterating through all ranks x < r2[i].

2. Contestant i achieves rank x = r2[i]:

We can forgo the optimization for this case

3. Contestant i achieves rank x > r2[i]:

From the solution of subtask 2, we can see that the calculation formula does not depend on the
rank x, but only on r2[i]. Thus, we can multiply the answer for one case by (n − r2[i]) instead of
iterating through all ranks x > r2[i].

With these optimizations, the final complexity is O(n2).

Problem F1. FireGhost and Perfect Slice 1
First of all, we have the following important observation for both F1 and F2: any cut that satisfies the
condition divides the cake into two parts with equal lengths. This is because the perimeter of each part
includes the length of the polygon in that part, plus the length of the cut edge. Since the length of the
cut edge is included in the perimeter of both parts, we only need the lengths of the polygons in the two
parts to be equal in order to have equal perimeters for the two polygon parts. In other words, if P and
Q are two cutting points on the cake, then P and Q are antipodal points of each other. It is easy to see
that for any point P , the antipodal point Q is unique.

Now let’s consider a simple approach for subtask F1 that can be applied to all subtasks, but cannot be
extended to F2. Let f be a function that takes a point P on the polygon with the following definition:

• Take the point Q as the antipodal point of point P on the polygon. The value of f(P) is equal to
the area of the left part of the cake in the direction of the vector ~PQ minus the area of the right
part of the cake in the direction of the vector ~PQ without taking the absolute value.

The left part of the cake in the direction of vector ~FG is colored red, and the right part of the cake in the
direction of the vector is colored green. Therefore, f(F) = 19.4− 21.4 = −2.

Observation: for any point P on the polygon and the antipodal point Q of point P , we have
f(P) = −f(Q). This is because the left part of the vector ~PQ is the right part of the vector ~QP ,
and vice versa. Thus, the observation is proven by the definition of f .

Page 5 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Therefore, if we have a point A moving clockwise along the polygon boundary from point P to point Q,
there must be a position where f(A) = 0 (since f(P) and f(Q) have opposite signs). Thus, the minimum
difference in area can always be achieved as 0. We can also use a binary search algorithm to find a point
A such that f(A) is equal to 0 as follows.

• Initialize A := P and B := Q. Here, assume that f(A) > 0 (and therefore f(B) < 0).

• Repeat the following steps several times: choose a point C that is “in the middle” on the clockwise
path from A to B. If f(C) > 0, set A := C; otherwise, set B := C.

• When the two points A and B are close enough (or after repeating the necessary number of times),
output the point A.

We can see that after each step of the above operation, we ensure that f(A) > 0 and f(B) < 0, while the
clockwise distance from A to B is halved. Therefore, after enough steps, A and B will be close enough
to have f(A) ≈ 0.

As for the implementation, the simplest way to represent an arbitrary point P on the polygon is to use
a real number to describe the clockwise distance from vertex 1 to point P . We only need to implement
two additional functions: a function to find the antipodal point of an arbitrary point on the polygon,
and the function f (or similarly, the function to find the area of the left part and the right part). These
two functions can be implemented in O(n) complexity, so our problem can be solved in O(n log ε−1)
complexity, where ε is the required accuracy.

(Those who want to learn more about the solution can read about the Borsuk-Ulam theorem and the
bisection method for finding roots.)

Problem F2. Tahp and Perfect Slice 2
Subtask 1: n = 3.

With the condition that the cake is in the form of a triangle, we can find the optimal cutting line by
solving a quadratic equation. Specifically, assuming that the two cutting points P and Q lie on the edges
AB and AC.

We have the following conditions:

• AP +AQ = AB+BC+AC
2 = p

• AP ≤ AB

• AQ ≤ AC

• |AP ·AQ− AB·AC
2 | = |AP ·AQ− s| is minimized/maximized.

Assuming AP ·AQ = q, then AP and AQ will be the two solutions of the quadratic equation x2−px+q = 0
(according to Viète’s formulas). Therefore, we need to find q such that |q − s| is minimized and
x2 − px+ q = 0 has two solutions x1 ≤ AB and x2 ≤ AC.
Assuming AB ≤ AC, the above conditions are equivalent to:

• p−
√

∆ ≤ 2AB

• p+
√

∆ ≤ 2AC

where ∆ = p2 − 4q.

From the above two conditions, we can determine the range of q and calculate the corresponding values
of AP and AQ.

Page 6 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Additionally, we can find q using ternary search.

Subtask 2: n ≤ 500.

Assuming that the two cutting points P and Q lie on the edges AiAi+1 and AjAj+1, when “moving”
point P along the edge AiAi+1 such that the corresponding point Q still lies on the edge AjAj+1, we can
prove that the area of the left part of the cake with respect to the vector ~PQ has a parabolic shape (the
specific proof is omitted here). Therefore, to solve problem F2, we only need to find the point P such
that the corresponding area of the left part is maximized/minimized. Similarly, for problem F1, we need
to find the point P such that the area is closest to 1

2 of the total area. Both problems can be solved by
constructing the equation of the parabola or using ternary search.

In summary, we can solve both problems F1 and F2 as follows:

• For each vertex Ai of the polygon, find the antipodal point Bi. Sort all 2n points and divide the
perimeter of the polygon into 2n segments.

• In each segment, find the point P such that the difference in area between the two cake pieces is
optimized by constructing the area equation or using ternary search.

The part of finding the antipodal point and calculating the area can be implemented in O(n) complexity,
so the complexity of this algorithm is O(n2) or O(n2 log ε−1), where ε = 10−12 is the maximum error.

Subtask 3: No additional limits.

To solve the last subtask, we need to optimize the algorithm in subtask 2.

Firstly, we can find the antipodal point in O(log n) by precomputing the cumulative sum of the lengths
of the polygon edges, combined with binary search technique.

Next, we can quickly calculate the area of a cake piece in O(log n). Suppose we need to calculate the area
of the polygon PAiAi+1 · · ·AjQ. Applying the shoelace formula, we have:

Area(PAiAi+1 · · ·AjQ) = 1
2(cross(P,Ai)+cross(Ai, Ai+1)+· · ·+cross(Aj−1, Aj)+cross(Aj , Q)+cross(Q,P))

where cross(P,Q) = xP yQ − xQyP .
Let prefi = cross(A0, A1) + cross(A1, A2) + · · · + cross(Ai−1, Ai), then
Area(PAiAi+1 · · ·AjQ) = 1

2(cross(P,Ai) + prefj − prefi + cross(Aj , Q) + cross(Q,P)).

With these two optimizations, we can implement the algorithm in subtask 2 with O(n) or O(n log ε−1)
complexity, which is sufficient to solve subtask 3.

Problem G. MofK and Equipment Installation
In this problem, we need to find a topological order of a tree [u1, u2, . . . , un] such that
n · u1 + (n− 1) · u2 + · · ·+ 1 · un is minimized.

Subtask 1: api ≤ ai for all 2 ≤ i ≤ n.

In this subtask, it can be easily observed that the optimal topological order must satisfy au ≤ av if vertex
u comes before vertex v in the topological order. Therefore, we can use std::priority_queue (or simply
sort the indices of the array a) to find the answer with a complexity of O(n log n).

Subtask 2: n ≤ 2000.

We have the following claim (which will be proven in the following subtasks, but not necessary for this
subtask): each subtree has an optimal topological order, and this order remains unchanged even after
merging it with the topological orders of other subtrees. In other words, for each subtree, we only need to
consider one unique optimal topological order.

Using this claim, the best topological order of the subtree rooted at u consists of vertex u at the beginning,
followed by the concatenation of the optimal topological orders t1, t2, . . . , tk of the subtrees rooted at
v1, v2, . . . , vk, respectively, where v1, v2, . . . , vk are the immediate children of u. Note that since we can

Page 7 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

shuffle the sequences t1, t2, . . . , tk arbitrarily (as long as we keep the elements of each sequence in the
correct order), we can perform a knapsack-on-tree dynamic programming to merge these sequences as
follows:

For any two sequences a and b, let dpi,j be the minimum cost if we merge the first i elements of a with
the first j elements of b. Then dpi,j = min(dpi−1,j + s · ai, dpi,j−1 + s · bj), where s = |a|+ |b| − (i+ j− 1).
After calculating dp|a|,|b|, we can backtrack to find the best way to merge the sequences a and b. Since the
complexity of each dynamic programming step is O(|a| · |b|), the problem can be solved with a complexity
of O(n2).

Subtask 3: There exists 3 ≤ k ≤ n such that pk = 1; otherwise pi = i− 1 for all 2 ≤ i ≤ n, i 6= k.

In this subtask, the tree consists of two paths connected at root 1. Since the topological orders of these
two paths are already determined, let’s assume these orders are represented by two arrays a and b. We
need to find the best way to merge these two arrays a and b to form the most optimal array c with
reasonable complexity.

First, we observe that if two consecutive elements in c are ci = ax and ci+1 = by, and ax > by, swapping
these two elements in c (ci = by, ci+1 = ax) will result in a better answer. We can generalize this
observation as follows: if there are two subsequences of a and b consecutively appearing in c (i.e., c has
the form [. . . , ai, ai+1, . . . , aj , bk, bk+1, . . . , bl, . . .]), if the mean of the subsequence from a is greater than
the mean of the subsequence from b (i.e., ai+ai+1+···+aj

j−i+1 >
bk+bk+1+···+bl

l−k+1), swapping these subsequences
will yield a better c.

From there, we have an important observation: if ai ≥ ai+1, these two elements will be adjacent in c.
Assuming otherwise, c will have the form [. . . , ai, bj , bj+1, . . . , bk, ai+1, . . .]. Consider the following two
cases:

• The mean of the elements from b in between is less than ai. In this case,
c′ = [. . . , bj , bj+1, . . . , bk, ai, ai+1, . . .] will be better than c.

• The mean of the elements from b in between is not less than ai. In this case,
c′ = [. . . , ai, ai+1, bj , bj+1, . . . , bk, . . .] will be better than c.

Therefore, we can “glue” these two consecutive elements ai and ai+1 back into a segment of a. We
continuously perform this pre-processing on a, and in the end, we will get a series of glued segments, and
an important observation is that the mean of the elements forming these segments will be increasing.
Similarly, after pre-processing b, we will also obtain a series of glued segments with increasing means.
The final step is to concatenate these glued subsequences in order of increasing means to get c.

We have found a way to merge the topological orders a and b in complexity O(|a|+ |b|). Therefore, this
subtask can be solved with a complexity of O(n).

(Although not necessary for the above algorithm, we can further prove that the order for permforming the
gluing operations does not affect the final glued subsequences that can be obtained.)

Subtask 4: No additional constraints.

Due to the observation above, each subtree not only has a unique optimal topological order, but we
can also represent this order as glued segments with increasing means. We can use the data structure
std::set or std::priority_queue to store these segments (since these data structures are already
sorted in increasing order). When merging the subtrees together, we can merge the representation of the
segments as well, while applying the small-to-large technique to ensure the final complexity. Additionally,
after merging the direct subtrees of the subtree rooted at u, we need to add the value of the root u to the
beginning of the topological order; this means we need to modify some glued segments at the beginning of
the data structure to obtain the representation of the entire subtree rooted at u. As a result, the problem
can be solved with a complexity of O(n log2 n).

(Furthermore, using specific data structures that support merging in O(log n) such as leftist heap, ran-
domized heap, or treap can reduce the complexity to O(n log n).)

Page 8 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

Problem H. Kuroni and the Sharing of the VNOI Cup Problem
Setting Process
Subtask 1: n ≤ 20, q ≤ 1000.

In this subtask, we can solve the problem using bitmask dynamic programming for all states of the
sequence. Let dpmsk be the maximum value that can be achieved if the sequence starts with bitmask
msk. We can precompute all the answers with a complexity of O(n · 2n). Therefore, this subtask can be
solved with a complexity of O(n · 2n + q).

Subtask 2: n, q ≤ 1000.

Our first observation is that if we can solve the problem with a binary sequence b, we can solve it with
any sequence b by binary searching the answer. At each binary search step, we need to query if the answer
for the subsequence in the query is greater than or equal to x; hence, the subsequence becomes a binary
sequence with each value being 0 or 1 depending on whether the initial element is greater than or equal
to x.

Our goal now is to find a way to solve each query for the binary sequence b with O(n) complexity. For a
binary sequence, in each query, we only need to check if the subsequence can be transformed to 1.

We have the following greedy observations:

• If there are still three consecutive 0’s, we perform an operation on these three 0’s to transform them
into a single 0.

• Otherwise (assuming there are still 0 elements in the array), we want to perform an operation on
three consecutive elements where at least one is 0 and one is 1. This operation is equivalent to
“selecting two adjacent elements 0 and 1 and removing them”. Therefore, in this case, we find the
first 01 pair and remove it (we don’t find the first 10 pair because in the case of 1001..., we want
the first 0 to be connected to the rest to continue creating three consecutive 0’s).

These two observations lead to the following stack-based algorithm. Starting with an empty stack S, we
iterate through the elements from left to right. For the current element bu:

• If the current stack is empty or ends with 1: we push bu to the end of the stack.

• If the stack ends with a 0: if bu = 1, we remove the 0 at the end of the stack; otherwise, we push
bu = 0 to the stack.

• If the stack ends with two 0s: regardless of the value of bu, we remove the 0 at the end of the stack.

It is easy to see that the answer is YES only in the following cases:

• At any time, S = [1, 1]. This is because we can process the elements after it to transform the value
to any x, then perform the final operation with the sequence [1, 1, x].

• After running through the entire sequence, S = [1].

(Note that if the stack ends with S = [1, 0, 0], the answer is NO.)

Hence, we have solved the problem with complexity O(nq log(max b)) or O(nq log n).

Subtask 3: n, q ≤ 100, 000.

Similar to subtask 2, we will first solve the problem with the binary array b, and then the problem can
be solved by applying the binary search method in parallel to find the answer. Our goal is to find a way
to solve a binary subsequence in O(log n) using a segment tree.

Since the operations described in subtask 2 are not associative, we cannot apply the segment tree imme-
diately. We have the following observations:

Page 9 of 10

VNOI Cup 2023 - Final Round
Ha Long, Vietnam, July 22, 2023

• At any time, all the 1 values in S come before all the 0 values.

• At any time, S contains at most two 0 values at the end.

Therefore, we only need to consider 9 (or actually 7) states of S, represented by two numbers:

• The number of 1 values at the beginning of S (equal to 0, equal to 1, or greater than or equal to
2).

• The number of 0 values at the end of S (equal to 0, equal to 1, or equal to 2).

Based on these observations, we can store 9 (or 7) pieces of information in each segment tree node: if
the stack S starts with state i (1 ≤ i ≤ 9), then after adding the elements in the range in order, the
stack S will end in which state. Using this information, we can solve each binary subsequence in O(log n).
Together with parallel binary search, the problem can be solved with a complexity of O((n+ q) log2 n).

Page 10 of 10

