Problem E. lanhf and the VNOI Cup T-Shirt Distribution Process

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

In the XX season, VNOI Cup attracts n participants. The competition consists of m rounds, and to increase the chances of receiving a shirt, all participants participate in all m rounds. In each round, the participants are ranked from 1 to n, and no two participants have the same rank. The *ranking table* for a round is defined as a list of participants in order of their rankings from 1 to n.

After the end of all m rounds, the organizers will choose a number k and distribute shirts to all participants with a rank no greater than k in each round. The organizers want to choose the largest possible value of k, such that the total number of participants receiving shirts does not exceed a given limit s.

For example,

- If n = 3, m = 3, s = 2, the ranking tables for the 3 rounds are
 - -[3,1,2] (participant 3 has rank 1, participant 1 has rank 2, and participant 2 has rank 3),
 - [2, 1, 3],
 - [2, 3, 1].

The organizers will choose k = 1. In this case, the number of participants who receive shirts is 2, which are participants with indices 3 and 2. The organizers cannot choose k = 2 or k = 3, as all 3 participants would receive shirts.

- If n = 2, m = 2, s = 1, the ranking tables for the 2 rounds are
 - [1, 2],
 - [2,1].

The organizers will choose k = 0. In this case, the number of shirts distributed is 0. The organizers cannot choose k = 1 or k = 2, as both participants would receive shirts.

lanhf is responsible for distributing shirts to the participants. Currently, the competition has gone through m-1 rounds. Assuming the result of the last round is completely random, meaning each of the n! different ranking tables has a probability of $\frac{1}{n!}$ to occur. Help lanhf calculate the probability for each participant to be on the list of shirt recipients so that lanhf can better prepare the shirts for packaging!

Input

The first line contains three positive integers n, m, s $(1 \le n, m \le 2000, 1 \le s \le n)$ — the number of participants, the number of rounds in the competition, and the maximum number of participants who can receive shirts.

The *i*-th line among the next m-1 lines contains *n* distinct positive integers $r_{i,1}, r_{i,2}, \ldots, r_{i,n}$ $(1 \le r_{i,j} \le n)$ — the ranking table for the *i*-th round.

Output

Print *n* integers p_1, p_2, \ldots, p_n — where p_i is the probability for the *i*-th participant to receive a shirt, modulo 998 244 353.

Let $M = 998\,244\,353$. We can represent the answer as a simplified fraction $\frac{p}{q}$, where p and q are integers and $q \not\equiv 0 \pmod{M}$. Print the number corresponding to $p \cdot q^{-1} \mod M$, or in other words, print the corresponding integer x such that $0 \leq x < M$ and $x \cdot q \equiv p \pmod{M}$.

Scoring

$\mathbf{Subtask}$	Score	Constraints
1	500	$n,m \leq 8$
2	1250	$n, m \le 500$
3	1000	No additional constraints
Total	2750	

Examples

standard input	standard output
3 3 2	0 665496236 665496236
3 1 2	
2 1 3	
2 2 1	499122177 0
1 2	
3 3 3	1 1 1
1 2 3	
2 1 3	
846	1 1 516947969 516947969 623902721
27148653	623902721 1 516947969
27138654	
7 2 1 8 3 6 4 5	
3 1 2	665496236 665496236 665496236

Note

In the first sample test, consider all possible rankings that can occur in the final round:

- [1, 2, 3]: the organizers will choose k = 0, and no one will receive a shirt.
- [1,3,2]: the organizers will choose k = 0, and no one will receive a shirt.
- [2, 1, 3]: the organizers will choose k = 1, and the people who receive shirts are 2 and 3.
- [2,3,1]: the organizers will choose k = 1, and the people who receive shirts are 2 and 3.
- [3, 1, 2]: the organizers will choose k = 1, and the people who receive shirts are 2 and 3.
- [3, 2, 1]: the organizers will choose k = 1, and the people who receive shirts are 2 and 3.

Therefore, the probability of person 1 receiving a shirt is 0, while the probability of person 2 and 3 receiving shirts is both $\frac{4}{6} = \frac{2}{3}$. Since 665 496 236 $\cdot 3 \equiv 2 \pmod{998244353}$, we will print 665 496 236. In the second sample test, consider all possible rankings that can occur in the final round:

- [1,2]: the organizers will choose k = 1, and the person who receives a shirt is 1.
- [2,1]: the organizers will choose k = 0, and no one will receive a shirt.

Therefore, the probability of person 1 receiving a shirt is $\frac{1}{2}$, while the probability of person 2 receiving a shirt is 0. Since $499122177 \cdot 2 \equiv 1 \pmod{998244353}$, we will print 499122177.

In the third sample test, since the maximum number of shirts distributed is equal to the number of participants, everyone will definitely receive a shirt.

In the fourth sample test, the probabilities for each participant are $[1, 1, \frac{27}{56}, \frac{27}{56}, \frac{3}{8}, \frac{3}{8}, 1, \frac{27}{56}]$.

In the fifth sample test, since there is only one round, all participants have an equal probability of receiving a shirt, which is $\frac{2}{3}$.