

Problem G: Corner-Shared Cells

Time limit: 1s; Memory limit: 512 MB

Consider a squared-cell grid with **M** horizontal rows and **N** vertical columns. We denote (\mathbf{i}, \mathbf{j}) as the cell on the intersection of \mathbf{i} -th row and \mathbf{j} -th column. Given integers \mathbf{p} and \mathbf{q} , Gia Han is wondering how many cells share at least one corner with the cell (\mathbf{p}, \mathbf{q}) . Two cells (\mathbf{i}, \mathbf{j}) and (\mathbf{k}, \mathbf{l}) are said to share a corner if $|\mathbf{i} - \mathbf{k}| \le 1$ and $|\mathbf{j} - \mathbf{l}| \le 1$. Let's program to help her calculate the answer!.

Input

The first line contains two integers **M**, **N** ($1 \le \mathbf{M}$, $\mathbf{N} \le 200$) The second line contains two integers **p**, **q** ($1 \le \mathbf{p} \le \mathbf{M}$, $1 \le \mathbf{q} \le \mathbf{N}$).

Output

Print the number of cells in the grid which share at least one corner with the cell (**p**, **q**).

Sample

Input	Output	
43	5	
4 2		
43	8	
32		

Explanation of the first case:

(1,1)	(1,2)	(1,3)
(2,1)	(2,2)	(2,3)
(3,1)	(3,2)	(3,3)
(4,1)	(4,2)	(4,3)

The cell (4,2) shares at least one corner with the cells (3,1), (3,2), (3,3), (4,1), and (4,3).