

The 2024 ICPC Vietnam Northern Provincial Programming Contest

Problem E DIVISIBILITY FACTOR

Time limit: 0.5 seconds

Let the numeric string Σ be a mysterious cipher. Within this sequence, there exists an enigmatic quality, the so-called *divisibility factor*, tethered to a prime number \mathbb{P} . This factor is defined as the count of distinct pairs of positions $\{i,j\}$ $(1 \le i \le j \le |\Sigma|)$, where the number formed by the digits in the string Σ between positions i and j, inclusive, is divisible by the prime \mathbb{P} .

For example, the divisibility factor of the string $\Sigma = 101010$ with respect to $\mathbb{P} = 5$ is 12. The pairs $\{i,j\}$ and corresponding substrings are: $\{1,2\}:10, \{1,4\}:1010, \{1,6\}:101010, \{2,2\}:0, \{2,4\}:010 \equiv 10, \{2,6\}:01010 \equiv 1010, \{3,4\}:10, \{3,6\}:1010 \equiv 10, \{4,4\}:0, \{4,6\}:010 \equiv 10, \{5,6\}:10$ and $\{6,6\}:0$. Note that a number with leading zeros is considered equal to the corresponding number without leading zeros.

Task: Given a numeric string S and a prime number \mathbb{P} , you are required to answer Q queries of the form: find the divisibility factor for the substring of S from position l to position r inclusive.

Input

The first line contains a single prime number \mathbb{P} ($\mathbb{P} \leq 10^9 + 7$).

The second line contains a non-empty numeric string $S(|S| \le 10^5)$.

The third line contains a single positive integer Q, which is the number of queries $(Q \le 10^5)$.

Each of the next Q lines specifies one query and contains two integers l and r, which are the left and right boundaries of the substring whose divisibility factor is of interest $(1 \le l \le r \le |S|)$.

Output

For each query, print a single integer on a separate line that is the divisibility factor of the corresponding substring.

Sample Input	Sample Output
5	0
101010	12
5	1
1 1	4
1 6	0
2 2	
2 4	
3 3	