Problem L Linking Bits

What should you do with a lot of bits? Link them together, of course!
Today at class, Minh learnt about binary representation of integers and he was excited to practice his knowledge.

Initially, Minh has a graph of m vertices, numbered from 0 to $m-1$, with no edges. Minh then writes down the binary representation of every integer from 1 to n. After writing down the binary representation of the integer x, Minh adds an edge between every pair of nodes (i, j), satisfying that both the i-th and the j-th bits of x are 1 .

More formally, for each integer x from 1 to n :

- Let $x_{m-1} x_{m-2} \ldots x_{0}$ be the m least significant bits of x, where x_{0} is the least significant one. We may add leading zeroes so that the binary representation of x contains at least m bits.
- For all pairs of indices $(i, j)(0 \leq i<j \leq m-1)$ such that $x_{i}=x_{j}=1$, Minh adds an edge connecting the i-th and the j-th vertices.

After finishing the graph with all the satisfied edges, Minh wonders if it is connected. Please help him to answer the question.

Input

The first line of the input contains a single integer $t\left(1 \leq t \leq 10^{3}\right)$ - the number of test cases. t test cases follow, each is presented as below:

- The first line contains a single integer $m\left(1 \leq m \leq 10^{3}\right)$.
- The second line contains a string demonstrating the binary representation of $n(0 \leq n<$ $\left.2^{10^{3}}\right)$. It is guaranteed that this string does not contain leading zeroes.

Output

For each test case, output a single line containing YES if the graph is connected, and NO otherwise.

Sample Explanation

In the first test case, $m=3$ and $n=4$:

- No edges are added when Minh writes down the binary representation of 1-001, 2-010 and 4-100.
- Edge $(0,1)$ is added when Minh writes down the binary representation of 3-011.

The resulting graph is not connected since there is no path from vertex 2 to vertex 0 and 1 .

For the second sample, with $m=3$ and $n=5$:

- No edges are added when Minh writes down the binary representation of 1 - 001, 2 - 010 and 4-100.
- Edge $(0,1)$ is added when Minh writes down the binary representation of $3-011$.
- Edge $(0,2)$ is added when Minh writes down the binary representation of $5-101$.
- Edge $(1,2)$ is added when Minh writes down the binary representation of $6-110$.
- Edges $(0,1),(0,2)$ and $(1,2)$ are added when Minh writes down the binary representation of 7 - 111 .

The resulting graph is this case is connected.

Sample Input 1

2	NO
3	YES
100	
3	
111	

