ICPC Asia Pacific - Hue City Regional Contest
Hue University of Sciences - 8 December 2023

Problem H Harmonious Hue Palace

In the historic city of Hue, Vietnam, the revered king wants to construct a grand palace. The city is laid out in an $n \times n$ grid. The rows are numbered from 1 to n from north to south, and the columns are numbered from 1 to n from east to west. The cell on the i-th row and the j-th column of the grid is denoted as (i, j). Each cell radiates with either harmonious or ordinary energy.

The palace must be a rectangle within this grid, with its sides parallel to the city's borders. Also, to ensure fengshui alignment, among its 4 corners, exactly three must be harmonious and the other must be ordinary. Your task is to find a location to build the palace. The king is not patient, so you have to be quick!

Input

The first line of the input contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases. t test cases follow, each is presented as below:

- The first line contains an integer $n(2 \leq n \leq 5000)$ - the size of the grid.
- The second line contains a string s - the Base64-compressed representation the grid, obtained by the following steps:
- First, the grid is represented as matrix a of size $n \times n$, where $a_{i, j}$ equals to 0 if cell (i, j) is harmonious or 1 if this cell is ordinary.
- The elements of a are then listed row-first to obtain zero-indexed binary string b of length $n \times n$. Formally, $b_{(i-1) \times n+(j-1)}=a_{i, j}$ for every $1 \leq i, j \leq n$.
- b is then divided into continuous binary substrings of length 6 . If the last substring has less than 6 characters, repeat adding 0 to the end of this string until its length equals 6 . Let c_{i} be the i-th obtained substring.
- For each string c_{i} obtained during the previous steps, denote $c_{i}=c_{i, 0} c_{i, 1} c_{i, 2} c_{i, 3} c_{i, 4} c_{i, 5}$. Then we calculate the value $d_{i}=\sum_{j=0}^{5} 2^{j} \times c_{i, j}$. It can be seen that $0 \leq d_{i} \leq 63$.
- Finally, the string s is constructed as below: The i-th character of the string s equals to the d_{i}-th character of the following string (which has 64 characters, numbered from 0 to 63):

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
See the sample explanation for better understanding.
It is guaranteed that the sum of n^{2} over all test cases does not exceed 2.5×10^{7}.

Output

For each test case, if no appropriate placement for the palace exists, output NO on a single line.

ICPC Asia Pacific - Hue City Regional Contest
Hue University of Sciences - 8 December 2023

Otherwise, output YES on the first line. On the second line, output four integers x_{1}, y_{1}, x_{2} and $y_{2}\left(1 \leq x_{1}, y_{1}, x_{2}, y_{2} \leq n, x_{1} \neq x_{2}, y_{1} \neq y_{2}\right)$, where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ denote two opposite corners of the palace.
If there are multiple correct solutions, you can output any of them.

Sample Explanation

For the first testcase, the given matrix a is:

0	0	1
0	1	0
1	0	1

The Base64-compressed representation of the grid is obtained by the following steps:

- $b=001010101$
- $c_{0}=001010, c_{1}=101000$
- $d_{0}=2^{2}+2^{4}=20, d_{1}=2^{0}+2^{2}=5$
- $s_{0}=\mathrm{U}, s_{1}=\mathrm{F}$

In this testcase, another valid placement of the palace is to place the top-left corner at cell $(1,1)$ and the bottom-right corner at $(2,3)$.
For the second testcase, the given matrix a is:

$$
\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}
$$

For all placements of the palace, there are always at least two ordinary cells, violating the fengshui alignment.
For the third testcase, the given matrix a is:

1	1	1	1
1	1	1	1
0	0	1	1
0	1	1	1

Sample Input 1

Sample Output 1

3	YES	
3	1	3
	2	1
UF	NO	
3	YES	
VH	2	3
4		1
/zO		

