

Problem H Harmonious Hue Palace

In the historic city of Hue, Vietnam, the revered king wants to construct a grand palace. The city is laid out in an $n \times n$ grid. The rows are numbered from 1 to n from north to south, and the columns are numbered from 1 to n from east to west. The cell on the *i*-th row and the *j*-th column of the grid is denoted as (i, j). Each cell radiates with either harmonious or ordinary energy.

The palace must be a rectangle within this grid, with its sides parallel to the city's borders. Also, to ensure fengshui alignment, among its 4 corners, exactly three must be harmonious and the other must be ordinary. Your task is to find a location to build the palace. The king is not patient, so you have to be quick!

Input

The first line of the input contains a single integer $t \ (1 \le t \le 10^5)$ – the number of test cases. t test cases follow, each is presented as below:

- The first line contains an integer $n \ (2 \le n \le 5000)$ the size of the grid.
- The second line contains a string *s* the **Base64-compressed** representation the grid, obtained by the following steps:
 - First, the grid is represented as matrix a of size $n \times n$, where $a_{i,j}$ equals to 0 if cell (i, j) is harmonious or 1 if this cell is ordinary.
 - The elements of a are then listed row-first to obtain zero-indexed binary string b of length $n \times n$. Formally, $b_{(i-1)\times n+(j-1)} = a_{i,j}$ for every $1 \le i, j \le n$.
 - b is then divided into continuous binary substrings of length 6. If the last substring has less than 6 characters, repeat adding 0 to the end of this string until its length equals 6. Let c_i be the *i*-th obtained substring.
 - For each string c_i obtained during the previous steps, denote $c_i = c_{i,0}c_{i,1}c_{i,2}c_{i,3}c_{i,4}c_{i,5}$. Then we calculate the value $d_i = \sum_{j=0}^5 2^j \times c_{i,j}$. It can be seen that $0 \le d_i \le 63$.
 - Finally, the string s is constructed as below: The *i*-th character of the string s equals to the d_i -th character of the following string (which has 64 characters, numbered from 0 to 63):

```
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
```

See the sample explanation for better understanding.

It is guaranteed that the sum of n^2 over all test cases does not exceed 2.5×10^7 .

Output

For each test case, if no appropriate placement for the palace exists, output NO on a single line.

Otherwise, output YES on the first line. On the second line, output four integers x_1, y_1, x_2 and y_2 ($1 \le x_1, y_1, x_2, y_2 \le n, x_1 \ne x_2, y_1 \ne y_2$), where (x_1, y_1) and (x_2, y_2) denote two opposite corners of the palace.

If there are multiple correct solutions, you can output any of them.

Sample Explanation

For the first testcase, the given matrix *a* is:

0	0	1
0	1	0
1	0	1

The Base64-compressed representation of the grid is obtained by the following steps:

- *b* = 001010101
- $c_0 = 001010, c_1 = 101000$
- $d_0 = 2^2 + 2^4 = 20, d_1 = 2^0 + 2^2 = 5$
- $s_0 = U, s_1 = F$

In this testcase, another valid placement of the palace is to place the top-left corner at cell (1, 1) and the bottom-right corner at (2, 3).

For the second testcase, the given matrix a is:

$$\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array}$$

For all placements of the palace, there are always at least two ordinary cells, violating the fengshui alignment.

For the third testcase, the given matrix a is:

Sample Input 1	Sample Output 1	
3	YES	
3	1 3 2 1	
UF	NO	
3	YES	
VH	4 2 3 1	
4		
/z0		