\qquad

Problem C Crop Circle Conundrum

Keke, a mischievous alien, has landed on Earth with a unique mission: to create an artistic crop circle on a farm! He visualizes the farm as an infinite hexagonal grid and wishes to paint certain cells to form his favorite pattern. More precisely, Keke uses a hexagonal coordinate system to divide the farm into hexagonal cells, with the farm's center as cell $(0,0)$. See figure 1 for the coordinate system. Keke aims to paint a list of cells, with the i-th cell having coordinates $\left(x_{i}, y_{i}\right)$.

Figure C.1: Hexagonal coordinate system
Keke's spaceship is equipped with a specialized beam-gun capable of painting a star pattern on the farm. The size of a star pattern can vary between 2 and 666 (inclusive). See figure 2 for illustration.

Figure C.2: Star patterns of size 2,3 and 4
iCDC

The beam-gun has a quirky property: if it hits a hexagonal cell twice, the cell reverts to its original state, effectively erasing the paint. Keke can fire the gun-beam up to 666 times. Keke has spent a few months trying to paint his favorite pattern, without success. Please help him!

Input

The first line of the input contains a single integer $t(1 \leq t \leq 6666)$ - the number of test cases. t test cases follow, each is presented as below:

- The first line contains a single integer $n(0 \leq n \leq 66)$ - the number of cells in Keke's favorite pattern.
- In the next n lines, each contains two integers x_{i} and $y_{i}\left(0 \leq\left|x_{i}\right|,\left|y_{i}\right| \leq 6\right)$ - the coordinate of the i-th cell in Keke's favorite pattern. It is guaranteed that all n cells are distinct.

It is guaranteed that the sum of n over all test cases does not exceed 6666 .

Output

For each test case, if there is no solution, print NO. Otherwise, print YES, followed by:

- a line containing a single integer $k(0 \leq k \leq 666)$ - the number of times you want to use Keke's beam-gun;
- k lines, the j-th one with three integers: x_{j}, y_{j} and $r_{j}\left(0 \leq\left|x_{j}\right|,\left|y_{j}\right| \leq 666,2 \leq r_{j} \leq 666\right)$, where $\left(x_{j}, y_{j}\right)$ is the center where the gun-beam should target, and r_{j} is the size of the star.

If there are multiple correct solutions, you can output any of them.

Sample Explanation

The following figure illustrates Keke's favorite pattern, with painted cells having a cross:

Figure C.3: Keke's favorite pattern
Keke can perform the following operations with his beam-gun:

Step 1. Aim the beam-gun at cell $(0,0)$ and shoot with star size of 2 .

Step 2. Aim the beam-gun at cell $(1,0)$ and shoot with star size of 2 .

Sample Input 1

Sample Output 1

| 1 | |
| :--- | :--- | :--- |
| 6 | |
| 0 | 1 |
| -1 | 0 |
| -1 | -1 |
| 2 | 1 |
| 2 | 0 |
| 1 | -1 |

```
YES
```

2
$0 \quad 0 \quad 2$
102

