Problem L Lowest Possible Place

The year is 2050 . After several delays due to extraordinary circumstances, the Intercontinental Cooperative Plumbing Competition (ICPC) has finally been held! Participating in the contest are n plumbing teams who qualified via regional plumbing competitions from 2021 all the way to 2049. Traditionally, the ICPC consists of m plumbing problems, where teams compete to solve as many as possible. However, unlike other competitions of the same abbreviation, only the first team that solves a problem is given one point for that problem. After all problems have been solved, teams are ranked from $1^{\text {st }}$ to $n^{\text {th }}$ by number of points, with teams that have the same point receiving the same ranking. Formally, for each team i, their rank r_{i} is the number of teams j that scores strictly more points than them, plus 1 . For example, if there are 5 teams competing on 6 problems and the first teams to solve each problem are $1,2,1,4,5$, and 1 , respectively, then the rankings are as follows:

- $1^{\text {st }}$ place: team 1 (3 points)
- $2^{\text {nd }}$ place: teams 2,4 , and 5 (1 point)
- $5^{\text {th }}$ place: team 3 (0 points)

The organizers have prepared m problems. Since each competing team has very particular strengths and weaknesses, the organizers know for certain that team a_{i} will be the first to solve problem i. Unfortunately, due to extraordinary circumstances (again!), the contest has to be cut short. It was decided that the organizers will select at most k consecutive problems for the contest. In other words, they will choose two indices f, l such that $1 \leq f \leq l \leq m$ and $1 \leq l-f+1 \leq k$; and then select problems $f, f+1, \ldots, l$ for the contest.

As a member of the organizing team and a former plumber himself, MofK is very eager to know which ranking each team might end up with. While any team can win the tournament, finding the lowest (most pestimistic) possible ranking for each team is not a trivial task. Please help him answer this challenging question!

Input

The first line contains three integers n, m, and $k(1 \leq n \leq 10000,1 \leq k \leq m \leq 10000)$ the number of competing teams, the number of prepared problems, and the limit on the number of problems in the contest, respectively.

The second line contains m integers $a_{1}, a_{2}, \ldots, a_{m}\left(1 \leq a_{i} \leq n\right)$, the first team to solve each problem.

Output

Print n space-separated integers $r_{1}, r_{2}, \ldots, r_{n}$ in one line, where r_{i} is the lowest possible rank of team i among all possible choices of problems.

ICPC Asia Pacific - Vietnam National Contest
Hue University of Sciences - 5 November 2023

Sample explanation

In the example, there are 4 teams and 5 prepared problems, and since $k=m=5$, it is possible to choose any set of consecutive problems.

- Team 1 will finish last if the organizers choose the problems $[3,4,5]$.
- Team 2 will finish third if the organizers choose the problems [4,5]. There is no possible scenario where team 2 finishes last.
- Team 3 will finish third if the organizers choose the problems [2,3]. There is no possible scenario where team 3 finishes last.
- Team 4 will finish last if the organizers choose the problems $[2,3,4]$.

Sample Input 1

Sample Output 1

```
4 5 5
1
```

4334

