

Problem J Jumbled Graph

Let's revisit a very basic problem of graph theory: given an connected undirected graph of n vertices (numbered 1 to n), what is the depth-first-search (DFS) order of this graph. The DFS order could be generated by the following pseudocode:

```
dfs_order = [] # empty list

def DFS(u):
    visited[u] = True
    dfs_order.append(u)
    for vertex v that is directly connected to u:
        # note that the order of v is totally random
        if visited[v] == False:
            DFS(v)
```

```
DFS(random(1,n))
```

Thus, there are 12 valid DFS orders for the following graph:

- 1. 1, 2, 4, 3
- 1, 3, 2, 4
 1, 3, 4, 2
- 4. 1, 4, 2, 3
- 5. 2, 1, 3, 4
- 6. 2, 1, 4, 3
- 7. 2, 4, 1, 3
- 8. 3, 1, 2, 4
- -
- 9. 3, 1, 4, 2
- 10. 4, 1, 2, 3
- 11. 4, 1, 3, 2
- 12. 4, 2, 1, 3

Given a permutation of 1 to n, your task is to determine how many undirected graph takes this permutation as a valid DFS order? Note that, two graphs G1 and G2 are considered different iff there exists two vertices u and v ($u \neq v$) where G1 contains an edge between u and vand G2 does not contains it; or vice versa.

Input

- The first line contains an integer $n \ (1 \le n \le 16)$ the number of vertices.
- The second line contains n integers $a_1, a_2, \ldots a_n$ representing a DFS order. It is guaranteed that $(a_1, a_2, \ldots a_n)$ is a permutation of $(1, 2, \ldots, n)$.

Output

You need to print the number of graphs that takes this permutation to be its DFS order modulo $998\,244\,353$.

Sample explanation

- In the first sample, there is only one graph the complete graph takes 2, 1 as a valid DFS order.
- In the second sample, these 3 graphs takes 3, 1, 2 as a valid DFS order.

Sample Input 1	Sample Output 1
2	1
2 1	

Sample Input 2	Sample Output 2
3	3
3 1 2	