Problem J
 Jumbled Graph

Let's revisit a very basic problem of graph theory: given an connected undirected graph of n vertices (numbered 1 to n), what is the depth-first-search (DFS) order of this graph. The DFS order could be generated by the following pseudocode:

```
dfs_order = [] # empty list
def DFS(u):
    visited[u] = True
    dfs_order.append(u)
    for vertex v that is directly connected to u:
        # note that the order of }v\mathrm{ is totally random
        if visited[v] == False:
            DFS (v)
```

DFS (random (1, n))

Thus, there are 12 valid DFS orders for the following graph:

1. $1,2,4,3$
2. $1,3,2,4$
3. $1,3,4,2$
4. $1,4,2,3$
5. $2,1,3,4$
6. $2,1,4,3$
7. $2,4,1,3$
8. $3,1,2$, 4
9. $3,1,4,2$
10. $4,1,2,3$
11. $4,1,3,2$
12. $4,2,1,3$

Given a permutation of 1 to n, your task is to determine how many undirected graph takes this permutation as a valid DFS order? Note that, two graphs $G 1$ and $G 2$ are considered different iff there exists two vertices u and $v(u \neq v)$ where $G 1$ contains an edge between u and v and $G 2$ does not contains it; or vice versa.

Input

- The first line contains an integer $n(1 \leq n \leq 16)$ - the number of vertices.
- The second line contains n integers $a_{1}, a_{2}, \ldots a_{n}$ representing a DFS order. It is guaranteed that $\left(a_{1}, a_{2}, \ldots a_{n}\right)$ is a permutation of $(1,2, \ldots, n)$.

Output

You need to print the number of graphs that takes this permutation to be its DFS order modulo 998244353.

Sample explanation

- In the first sample, there is only one graph - the complete graph takes 2,1 as a valid DFS order.
- In the second sample, these 3 graphs takes $3,1,2$ as a valid DFS order.

Sample Input 1
Sample Output 1

2	1	
2	1	

Sample Input 2
Sample Output 2

| 3 | |
| :--- | :--- | :--- |
| 3 | 12 |

