Problem M. Triangle in Triangle

Ballon:
Time limit:
Memory limit:

1.5 seconds

256 megabytes

10 talented individuals in combinatorics or dynamic programming cannot match the skills of one talented individual in geometry.

On the 2D Cartesian plane, you are given a non-degenerate triangle $A B C$. Your tasks are:

1. Construct the largest regular triangle $P Q R$ such that vertices P, Q, and R lie on segment $A B, B C$, and $C A$, respectively.
2. Construct the smallest regular triangle $P^{\prime} Q^{\prime} R^{\prime}$ such that vertices P^{\prime}, Q^{\prime}, and R^{\prime} lie on segment $A B$, $B C$, and $C A$, respectively.

Input

The first line contains the number of test cases $t\left(1 \leq t \leq 10^{5}\right)$.
Each test case is described by a single line containing three pairs of integers $\left(x_{A}, y_{A}\right),\left(x_{B}, y_{B}\right),\left(x_{C}, y_{C}\right)$ - the coordinate of the vertices of the given triangle $A B C$. The vertices are listed in counter-clockwise order.
The coordinates of all vertices are between -10^{3} and 10^{3}. It is guaranteed that all triangles given in the input are non-degenerate.

Output

For each test case, print two real number - the edge length of the required largest and smallest triangle, respectively.
Definitions:

- p and P are the edge lengths of the smallest and largest triangles that you printed.
- j and J are the edge lengths of the smallest and largest triangles provided by the jury.

Your answer will be considered correct if the relative or absolute error between the edge length of the contestant's smallest and largest triangles to jury's is be no more than 10^{-9}, i.e., $\frac{|p-j|}{\max (1, j)} \leq 10^{-9}$ and $\frac{|P-J|}{\max (1, J)} \leq 10^{-9}$.

Example

standard input							standard output
4				0.732050807569	0.517638090205		
0	0	1	0	0	1		
4	4	1	1	10	1		
4	6	1	1	10	1		
4	4	1	1	5	1		

Note

Illustration of the third sample.

Illustration of the fourth sample.

