Problem I. Dwayne and Megan

Ballon:
Time limit:
Memory limit:

1 seconds
512 megabytes

Within the premises of a castle represented as an $N \times M$ grid, two individuals, Dwayne and Megan, reside. The castle has doors marked with '\#' symbols and empty spaces marked with '.' symbols. Dwayne and Megan can only move in four directions: up, down, left, and right. Another person, referred to as Xmen, wants to separate Dwayne and Megan by locking all the doors and constructing at most one new door at any empty location within the castle, except for the current positions of Dwayne or Megan. The condition for Xmen to succeed is that there should be no path between Dwayne and Megan that allows them to reach each other.

Figure 1: In the given diagram, Xmen can separate \mathbf{D} wayne and Megan by placing a single wall between them.

Figure 2: In the given diagram, Xmen cannot separate Dwayne and Megan.

Find the number of pairs of positions for Dwayne and Megan that allow Xmen to successfully divide them. Each square can only contain a single person, so Dwayne and Megan must be in different squares. This means that there will be at least two squares containing '.' for them to occupy.

Input

The first line contains two integers N and M separated by a space, where $1 \leq N, M \leq 500$.
The next N lines each contain a string of length M consisting of ' $\#$ ' and '.', where ' $\#$ ' represents a door and '.' represents an empty space in the castle. It is guaranteed that there will be at least two squares containing ','

Output

Print an integer representing the number of unique pairs of positions for Dwayne and Megan that allow Xmen to divide them with at most one door.

Examples

standard input	standard output
34 \#\#.\# \#\# . . .\#\#\#	8
$\begin{aligned} & 23 \\ & \# . . \\ & \# . \# \end{aligned}$	2
23	0
45 \#. . . \# \#.\#\#. . .\#\#. . .\#\#.	86

Note

In example 1, there are 8 valid pairs of position Dwayne and Megan.
$1:\left[\begin{array}{cccc}\# & \# & M & \# \\ \# & \# & \cdot & D \\ \cdot & \# & \# & \#\end{array}\right] 2:\left[\begin{array}{cccc}\# & \# & M & \# \\ \# & \# & \cdot & \cdot \\ D & \# & \# & \#\end{array}\right] 3:\left[\begin{array}{cccc}\# & \# & . & \# \\ \# & \# & M & \cdot \\ D & \# & \# & \#\end{array}\right] 4:\left[\begin{array}{cccc}\# & \# & \cdot & \# \\ \# & \# & \cdot & M \\ D & \# & \# & \#\end{array}\right]$
$5:\left[\begin{array}{cccc}\# & \# & D & \# \\ \# & \# & \cdot & M \\ \cdot & \# & \# & \#\end{array}\right] 6:\left[\begin{array}{cccc}\# & \# & D & \# \\ \# & \# & \cdot & \cdot \\ M & \# & \# & \#\end{array}\right] 7:\left[\begin{array}{cccc}\# & \# & \cdot & \# \\ \# & \# & D & \cdot \\ M & \# & \# & \#\end{array}\right] 8:\left[\begin{array}{cccc}\# & \# & \cdot & \# \\ \# & \# & \cdot & D \\ M & \# & \# & \#\end{array}\right]$
In example 2, there are 2 valid pairs of positions:
1: $\left[\begin{array}{ccc}\# & . & D \\ \# & M & \#\end{array}\right] 2:\left[\begin{array}{ccc}\# & . & M \\ \# & D & \#\end{array}\right]$

