Once upon a time, in a realm where mathematics held great power, a young scholar named Quang discovered a mysterious sequence. This sequence, denoted as A_{i}, had a captivating formula:

$$
T_{i}=i^{K} \times R^{i}
$$

Quang was determined to unlock its secrets.
As he delved deeper into his studies, he realized that his ultimate quest was to find the sum of the first n terms of this sequence $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, which
 he called S_{n}.

To keep things manageable in this enchanted land, S_{n} had to be calculated modulo $10^{9}+7$. Can you help him compute S_{n}.

Input

The first line of input contains $T(1 \leq T \leq 10)$, the number of test cases.
Each test case consists of three lines, including $K\left(1 \leq K \leq 10^{3}\right), n\left(1 \leq n \leq 10^{16}\right)$, and $R\left(2 \leq R \leq 10^{16}\right)$ respectively.

Output

For each test case, print your answer in a line.

Sample Input	Sample Output
1	21
1	
2	
3	

