Problem F
 Fibonacci Power

Time Limit: 2 seconds

Memory Limit: 512 megabytes
In the heart of an ancient forest, adventurer Minh the Sorcerer embarked on a quest of solving enigmatic puzzles. A family heirloom journal unveiled a cryptic message: a hidden treasure guarded by mathematical riddles tied to the Fibonacci sequence.

To recap, Fibonacci numbers are defined as follows:

- $F(0)=0$
- $F(1)=1$
- $F(i)=F(i-2)+F(i-1)$ for all $i \geq 2$.

To unlock the treasure, Minh should quickly calculate the sum S of the first n Fibonacci numbers raised to the power of k.

Formally:

$$
S=\sum_{i=1}^{n} F(i)^{k}
$$

Given n and $k\left(1 \leq n \leq 10^{18}, 1 \leq k \leq 10^{6}\right)$, help Minh calculate S modulo 998244353.

Input

The input contains two integers n and $k\left(1 \leq n \leq 10^{18}, 1 \leq k \leq 10^{6}\right)$.

Output

You should print the value S modulo 998244353.

Sample Input	Sample Output	Explanation
32	6	$F(1)^{2}+F(2)^{2}+F(3)^{2}$ $=1^{2}+1^{2}+2^{2}$ $=6$
51	12	$F(1)^{1}+F(2)^{1}+F(3)^{1}+F(4)^{1}+F(5)^{1}$ $=1^{1}+1^{1}+2^{1}+3^{1}+5^{1}$ $=12$
10001000	954643773	

