A. FIB

The Fibonacci sequence is defined as follows: $\mathrm{F}_{0}=1, \mathrm{~F}_{1}=1, \mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-2}+\mathrm{F}_{\mathrm{n}-1}$. Some of the first terms of the Fibonacci sequence: $1 ; 1 ; 2 ; 3 ; 5 ; 8 ; 13 ; 21 ; 34 ; \ldots$

Given a natural number n, count the number of ways to express it as a product of Fibonacci numbers (numbers in the expression must be greater than 1).

INPUT

The first line contains the number of tests $(1 \leq \mathrm{t} \leq 50)$. Each of the next t lines contains an integer $\mathrm{n}\left(2 \leq \mathrm{n} \leq 10^{18}\right)$.

OUTPUT

For each test case, print on one line the number of ways to factor n into the product of Fibonacci numbers.

Sample Input	Sample Output
5	1
2	0
7	2
8	2
40	3
64	

Example explanation:

- The number 2 can be expressed as a product of Fibonacci numbers uniquely as $2=2$
- The number 7 cannot be represented as a product of Fibonacci numbers
- The number 8 can be represented in two ways: $8=2 \times 2 \times 2$ and $8=8$
- The number 40 can be represented in two ways: $40=2 \times 2 \times 2 \times 5$ and $40=5 \times 8$

```
A man is sitting at home when he hears someone knocking at the door
Knock
Knock
Knock knock
Knock knock knock
Knock knock knock knock knock
"Who's there?"
"Fibonacci"
```

