The 2022 ICPC Asia Ho Chi Minh Regional Contest

HCMUTE - 9 December 2022
icpc.foundation

Problem K K Paths

In graph theory, a tree is a connected undirected graph which does not have any cycles. A tree containing n vertices has exactly $n-1$ edges. For every pair of vertices (u, v) in the tree, there is exactly one simple path between u and v. A simple path is a path which passes through each vertex at most once.

You are given a tree containing n vertices. These vertices are numbered from 1 to n, inclusive. Let a_{i} be the label of the i-th vertex.

You need to select k disjoint simple paths, so that the starting vertex of every path differs from its ending one, and the maximum sum of the labels of the starting and ending vertices of a path is minimized.

Formally, you need to select k pairs of vertices $\left(s_{1}, e_{1}\right),\left(s_{2}, e_{2}\right), \ldots,\left(s_{k}, e_{k}\right)$ satisfying all below conditions:

- For every i such that $1 \leq i \leq k, s_{i} \neq e_{i}$.
- Let's consider k simple paths on the tree: The simple path between s_{1} and e_{1}, the simple path between s_{2} and e_{2}, \ldots, the simple path between s_{k} and e_{k}. These k paths must be pairwise disjoint. In other words, every vertex in the tree belongs to at most one of these k paths.
- The value $\max \left(a_{s_{1}}+a_{e_{1}}, a_{s_{2}}+a_{e_{2}}, \ldots, a_{s_{k}}+a_{e_{k}}\right)$ is as small as possible.

Input

The first line of the input contains two integers n and $k\left(2 \leq n \leq 10^{5}, 1 \leq k \leq \frac{n}{2}\right)$.
The second line contains n integers: $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.
In the last $n-1$ lines, each contains two integers u and $v(1 \leq u, v \leq n)$ indicating that two vertices u and v is directly connected by an edge.

It is guaranteed that the given edges form a tree.

Output

Print a single integer denoting the minimum possible value of the above expression. If it is impossible to select k pairs of vertices satisfying all the above conditions, print -1 instead.

The 2022 ICPC Asia Ho Chi Minh Regional Contest

HCMUTE - 9 December 2022
icpc.foundation

Explanation to samples

In the first sample:

In the second sample:

Sample Input 1	Sample Output 1
42	2
$10 \quad 20 \quad 30 \quad 40$	70
1	2
2	3
3	4

Sample Input 2	Sample Output 2
41	30
10203040	
12	
13	
14	

Sample Input 3	Sample Output 3
42	-1
10203040	
12	
13	
14	

