The 2022 ICPC Asia Ho Chi Minh Regional Contest

HCMUTE - 9 December 2022
icp.foundation

Problem B Binary Assignment

Vuong is one of the greatest mathematicians of all time! His hobby is to find out mathematical properties of everything, and sometimes even of non-existing things! On his birthday, his programmer friend gave him a binary string S of length n. After a while, he has found out two very interesting properties of S :

- $X(S)$ - the length of the shortest string that is not a subsequence of S
- $Y(S)$ - the number of the strings that are not subsequence of S of length $X(S)$

Seeing Vuong had fun finding out these two properties, his programmer friend think that it would be great to also change the string S a little bit. The programmer will sequentially do q modifications to the string S. Each modification is one of the following types:

- $0 l r-\operatorname{set} S_{l}, S_{l+1}, \ldots, S_{r}$ to 0 .
- 1 lr $-\operatorname{set} S_{l}, S_{l+1}, \ldots, S_{r}$ to 1 .
- F lr - flip $S_{l}, S_{l+1}, \ldots, S_{r}$. That is, for $l \leq i \leq r$, if S_{i} is 0 , set it to 1 , else set it to 0 .

And of course, for each modified version of S, Vuong was also gladly to find $X(S)$ and $Y(S)$, because it was his birthday!

But a puzzle is not complete without an answer. Given the string S and the list of q modifications to the string S, help the programmer friend finding $X(S)$ and $Y(S)$ for each modification, so that he can check Vuong's result with the answer.

Because the answer can be very large, please output the answer modulo $10^{9}+7$.
A string a is a subsequence of a string b if a can be obtained from b by deletion of several (possibly, zero or all) characters. For example, "bd", "acd", "b" are subsequences of "abcd", while "da" is not.

Input

The first line contains two integers n and $q(1 \leq n, q \leq 100000)$ - the length of string S, and the number of modifications.

The second line contains the binary string S of length n.
The i-th line on the next q lines contains the description of the i-th operation in one of the following forms:

- $0 \operatorname{lr}(1 \leq l \leq r \leq n)-\operatorname{set} S_{l}, S_{l+1}, \ldots, S_{r}$ to 0 .
- $1 l r(1 \leq l \leq r \leq n)-\operatorname{set} S_{l}, S_{l+1}, \ldots, S_{r}$ to 1 .
- $\operatorname{Flr}(1 \leq l \leq r \leq n)-\operatorname{flip} S_{l}, S_{l+1}, \ldots, S_{r}$.

The 2022 ICPC Asia Ho Chi Minh Regional Contest

HCMUTE - 9 December 2022
icpc.foundation

Output

For each modification of S, output on a line two integers $X(S)$ and $Y(S)$ modulo $10^{9}+7$.

Explanation of the samples

In the example, the string S is 0110 , and there are $q=3$ modifications to S.
The following table demonstrates the modifications of S.

Order	Modification	Value of S	$X(S)$	$Y(S)$
Initial		0110	3	5
1	023	$0 \underline{000}$	1	1
2	134	0011	2	1
3	F 23	$0 \underline{101}$	3	4

- For $S=0000, X(S)=1$ and $Y(S)=1$, because there is one string of length 1 that is not a subsequence of S, which is the string 1 .
- For $S=0011$, the string 10 is the shortest, and is the only string of length 2 that is not a subsequence of S.
- For $S=0101$, the list of strings of shortest length that are not subsequences of S is $\{000,100,110,111\}$.
- For the initial string $S=0110$, the list of strings of shortest length that are not subsequences of S is
$\{000,001,100,101,111\}$. So $X(S)=3$ and $Y(S)=5$, but you don't have to print these numbers.

Sample Input 1	Sample Output 1
4	3
0	110
0	2
1	3

