Median of Xor Sequence
 Problem ID: medianxor

Given four non-negative integers a, b, c and d; let S be the "multiset" containing all values $z=x \oplus y$ of all pairs of integers (x, y) such that $a \leq x \leq b$ and $c \leq y \leq d$. Your task is to find the median value of S.

Please note that S is a "multiset". In other words, if there are several pairs (x, y) with the same value of $x \oplus y$, this value appears multiple times in S.

For example, consider $a=3, b=5, c=6$ and $d=9$. We have:

- $3 \oplus 6=5,3 \oplus 7=4,3 \oplus 8=11,3 \oplus 9=10$
- $4 \oplus 6=2,4 \oplus 7=3,4 \oplus 8=12,4 \oplus 9=13$
- $5 \oplus 6=3,5 \oplus 7=2,5 \oplus 8=13,5 \oplus 9=12$

Hence, 12 elements of S, in increasing order, are $2,2,3,3,4,5,10,11,12,12,13,13$; meaning that the median of S, the sixth element, is 5 .

A bitwise XOR (denoted as \oplus) is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if and only if two bits are different, and is 0 if two bits are equal. For example:

- $3 \oplus 6=011_{2} \oplus 110_{2}=101_{2}=5$
- $4 \oplus 7=100_{2} \oplus 111_{2}=011_{2}=3$
- $5 \oplus 8=0101_{2} \oplus 1000_{2}=1101_{2}=13$

The median value of a sequence of numbers in increasing order $v_{1} \leq v_{2} \leq \ldots \leq v_{n}$ is $v_{\frac{n}{2}}$ if n is even and $v_{\frac{n+1}{2}}$ if n is odd.

Input

The first line of the input contain an integer $t(1 \leq t \leq 75)$ - the number of test cases.
In the last t lines, each contains four integers $a, b, c, d\left(0 \leq a, b, c, d<10^{200}, a \leq b, c \leq d\right)$ representing a test case. All numbers are in decimal form.

Output

For each test case, write a single integer on a single line denoting the median value of S. All numbers should be in decimal form.

Sample Input $1 \quad$ Sample Output 1

2				5
3	5	6	9	
11	13	20	22	2

