Inversion Problem ID: inversion

Permutation is an important and interesting topic in mathematics. One of the most well-known concept relating to permutation is inversion.

To recap, a sequence of integers p_1, p_2, \ldots, p_n is called a **permutation** of integers $1, 2, \ldots, n$ if and only if:

- For every $1 \le i \le n, 1 \le p_i \le n$.
- For every $1 \le i < j \le n$, $p_i \ne p_j$.

An inversion of a permutation p_1, p_2, \ldots, p_n is a pair (i, j) such that i < j and $p_i > p_j$.

In this problem, there is a secret permutation p_1, p_2, \ldots, p_n of integers $1, 2, \ldots, n$. You are given a two-dimensional array c where $c_{u,v}$ equals the number of inversions of p if we swap p_u and p_v . Your task is to guess this secret permutation.

Input

The first line contains an integer $n \ (1 \le n \le 1 \ 000)$ — the length of the permutation.

In the next n lines, the u-th one contains n integers $c_{u,1}, c_{u,2}, \ldots, c_{u,n} \left(0 \le c_{u,v} \le \frac{n \cdot (n-1)}{2} \right)$.

It is guaranteed that there is at least one valid secret permutation.

Output

You should print a single line consists of n integers p_1, p_2, \ldots, p_n representing the secret permutation. If there are multiple correct permutations, you can output any of them.

Sample Input 1	Sample Output 1
2	1 2
0 1	
1 0	

Sample Input 2	Sample Output 2
3	2 3 1
2 3 1	
3 2 1	
1 1 2	