Inversion

Problem ID: inversion

Permutation is an important and interesting topic in mathematics. One of the most well-known concept relating to permutation is inversion.

To recap, a sequence of integers $p_{1}, p_{2}, \ldots, p_{n}$ is called a permutation of integers $1,2, \ldots, n$ if and only if:

- For every $1 \leq i \leq n, 1 \leq p_{i} \leq n$.
- For every $1 \leq i<j \leq n, p_{i} \neq p_{j}$.

An inversion of a permutation $p_{1}, p_{2}, \ldots, p_{n}$ is a pair (i, j) such that $i<j$ and $p_{i}>p_{j}$.
In this problem, there is a secret permutation $p_{1}, p_{2}, \ldots, p_{n}$ of integers $1,2, \ldots, n$. You are given a two-dimensional array c where $c_{u, v}$ equals the number of inversions of p if we swap p_{u} and p_{v}. Your task is to guess this secret permutation.

Input

The first line contains an integer $n(1 \leq n \leq 1000)$ - the length of the permutation.
In the next n lines, the u-th one contains n integers $c_{u, 1}, c_{u, 2}, \ldots, c_{u, n}\left(0 \leq c_{u, v} \leq \frac{n \cdot(n-1)}{2}\right)$.
It is guaranteed that there is at least one valid secret permutation.

Output

You should print a single line consists of n integers $p_{1}, p_{2}, \ldots, p_{n}$ representing the secret permutation. If there are multiple correct permutations, you can output any of them.

Sample Input 1	Sample Output 1				
2	1	$	$	1	2
:---	:---				
0	1				
1	0				

Sample Input 2

Sample Output 2

```
2 3 1
3}22
```

112

