GCD query

Problem ID: gcdquery

You are given an array a of n positive integers $a_{1}, a_{2}, \ldots, a_{n}$. There are q queries in the form $\ell r d$. For each query, you need to find the number of sub-arrays within the range from ℓ to r whose greatest common divisor are less than or equal to d. More formally, you are about to count how many pairs of indices (u, v) such that:

- $\ell \leq u \leq v \leq r ;$
- $\operatorname{gcd}\left(a_{u}, a_{u+1}, \ldots, a_{v-1}, a_{v}\right) \leq d$

Input

The first line of input contains 2 integers n and $q\left(1 \leq n \leq 2 \times 10^{5}, 1 \leq q \leq 2 \times 10^{5}\right)$.
The second line contains n positive integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$ describing the given array. On the next q lines, each contains 3 integers $\ell r d\left(1 \leq \ell \leq r \leq n, 1 \leq d \leq 10^{9}\right)$ describing a query.

Output

For each query, you need to print the answer in one line.

Sample Input $\mathbf{1}$				Sample Output 1
6 5 12 3 9 6 2 8 4 4 1 5 3 12 2 4 3 9 1 5 4 6 2 6 2 1 6 1				

