Consecutive primes

Problem ID: consecutiveprimes

You may know that prime number is one of the most amazing concepts in number theory! In the life of every competitive programmer, there must be a huge number of problems about prime numbers, and this is another one!

Recall that prime numbers are positive integers which have exactly two positive divisors. 10 smallest prime numbers are $2,3,5,7,11,13,17,19,23$, and 29 .

In this problem, a positive integer n is called "nice" if and only if it can be represented as product of consecutive prime numbers. More formally, a positive integer n is "nice" if and only if there exists a sequence of integers $p_{1}, p_{2}, \ldots, p_{k}$ such that:

- All numbers $p_{1}, p_{2}, \ldots, p_{k}$ are prime numbers,
- $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}$,
- $p_{1}<p_{2}<\ldots<p_{k}$,
- No prime number x exists such that $p_{i}<x<p_{i+1}(1 \leq i<k)$.

According to the above definition, $2=2,6=2 \cdot 3,30=2 \cdot 3 \cdot 5$ and $210=2 \cdot 3 \cdot 5 \cdot 7$ are nice, while $4=2^{2}$, $10=2 \cdot 5$ and $20=2^{2} \cdot 5$ are not.

Given several integers, your task is to determine which ones are nice.

Input

The first line of the input contains an integer $t\left(1 \leq t \leq 10^{5}\right)$. The next t lines contain t integers $n_{1}, n_{2}, \ldots, n_{t}$ $\left(1 \leq n_{i} \leq 10^{19}\right)$, each is printed in a single line.

Output

Print t words. The i-th one should be NICE if n_{i} is a nice number, or UGLY otherwise.

Sample Input 1
10 Sample Output $\mathbf{1}$ 1 UGLY 2 NICE 3 NICE 4 UGLY 5 NICE 6 NICE 7 NICE 8 UGLY 9 UGLY 10 UGLY

