Binary Strings

Problem ID: binarystrings

Let's define a function f over k binary strings of the same length m (k must be odd):

- The result is a binary string of length m;
- Consider the $i^{t h}$ bits of k binary strings:
- Let c_{0} be the number of strings whose i-th bit equal to 0 ,
- Let c_{1} be the number of strings whose i-th bit equal to 1 .
- If $c_{0}>c_{1}$, the i-th bit of the result is 0 ,
- Otherwise, the i-th bit of the result is 1 .

An example of function f over 3 binary strings: $f(100,111,010)=110$
You are given a set S of n binary strings, all of which have the same length m, and an odd integer k. Your task is to check if S is k-beautiful or not.

A set is considered k-beautiful iff for any selections of k strings $x_{1}, x_{2}, \ldots, x_{k}$ in $S, f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is also a string in S. Note that a string from S can be selected multiple times.

Input

The first line contains 3 integers $n, m, k(1 \leq k \leq n \leq 300,1 \leq m \leq 300, k$ is odd). Then, n lines follow, each consists of a binary string of length m. It is guaranteed that all n strings are pair-wise distinct.

Output

Print YES if S is k-beautiful, and NO otherwise.

Sample Input 1	Sample Output 1
333	NO
100	
111	
010	

Sample Input 2	Sample Output 2
423	YES
00	
01	
10	
11	

