Binary Strings Problem ID: binarystrings

Let's define a function f over k binary strings of the same length m (k must be odd):

- The result is a binary string of length m;
- Consider the i^{th} bits of k binary strings:
 - Let c_0 be the number of strings whose *i*-th bit equal to 0,
 - Let c_1 be the number of strings whose *i*-th bit equal to 1.
 - If $c_0 > c_1$, the *i*-th bit of the result is 0,
 - Otherwise, the *i*-th bit of the result is 1.

An example of function f over 3 binary strings: f(100, 111, 010) = 110

You are given a set S of n binary strings, all of which have the same length m, and an odd integer k. Your task is to check if S is k-beautiful or not.

A set is considered k-beautiful iff for any selections of k strings x_1, x_2, \ldots, x_k in S, $f(x_1, x_2, \ldots, x_k)$ is also a string in S. Note that a string from S can be selected **multiple times**.

Input

The first line contains 3 integers n, m, k ($1 \le k \le n \le 300, 1 \le m \le 300, k$ is odd). Then, n lines follow, each consists of a binary string of length m. It is guaranteed that all n strings are pair-wise distinct.

Output

Print YES if S is k-beautiful, and NO otherwise.

Sample Input 1	Sample Output 1
3 3 3	NO
100	
111	
010	

Sample Input 2	Sample Output 2
4 2 3	YES
00	
01	
10	
11	