Problem M: Binary
Time limit: 1.5 s ; Memory limit: 256 MB

Binary is a base-2 number system that uses two states 0 (bit-0) and 1 (bit-1) to represent a number. Hieu is working on the topic of binary representation. Particularly, he wants to study the properties of numbers which the amount of bit-1 in its representation is odd. In order to understand that, he set up this problem.

Given n and m, calculate them sum $\sum_{x=0}^{2^{n}-1} x^{m}$ where the number of bit-1 in binary representation of x is odd.

This problem turns out to be harder than it looks, can you help him to solve it?.

Input

The input starts with $T\left(1 \leq T \leq 10^{4}\right)$ - the number of test cases.
Each test case consists of 2 integers n and $m .\left(1 \leq n \leq 10^{6}, m \leq n, 1 \leq m \leq\right.$ 5000).

Output

For each test case, you should print the result modulo $10^{9}+7$.
Sample

	Input	
1		416
3		

Explaination

For $n=3$, there are 4 numbers with odd number of bit 1 in its binary representation: $1,2,4,7$. Thus, the answer is $1^{3}+2^{3}+4^{3}+7^{3}=1+8+64+343=416$

