Problem L: Mold

Time limit: 2.5 s ; Memory limit: 256 MB

A mold or mould is one of the structures certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. Only from a single individual, mold can be cloned and grow very quickly. The study of them interests many scientists.

Bob is a scientist, he is especially the range of their growth. Therefore, on the first day Bob planted a mold individual at a coordinate x_{1}, y_{1}. On the second day, he discovered that 2 new individuals had appeared at coordinates x_{2}, y_{2} and x_{3}, y_{3}. On the j-th day the mold will add j individuals. And by the n-th day he had a total of $n \times(n+1) / 2$ individuals with coordinates from x_{1}, y_{1} to $x_{n \times(n+1) / 2}, y_{n \times(n+1) / 2}$. Bob defines the growth range of the mold individuals as defined by the circle with the smallest radius covering all the mold individuals at a given date.

Since Bob is very busy, he wants you to keep a record of the growth range of all the days that Bob did the research.

Input

The first line contains a natural number, $n(1 \leq n \leq 500)$.
Next $n \times(n+1) / 2$ lines: each line contains 2 real numbers $x_{i}, y_{i}\left(0 \leq x_{i}, y_{i} \leq\right.$ $\left.10^{4}\right)$. Each of them has at most 14 decimal digits in the input.

Output

Print out n lines, each j-th line contains 3 real numbes x_{j}, y_{j}, r_{j} representing the center and radius of the growing range at day j. The answer is accepted if the absolute error or relative error does not exceed 10^{-6}.

Sample

Input	Output
3	
1.01 .0	1.01 .00 .0
2.02 .0	1.50 .7071067812
2.01 .0	2.01 .01 .0
3.01 .0	
2.0	0.0
2.0	0.5

