Problem K: Matrix Operations

Time limit: 1s; Memory limit: 256 MB

Given a matrix A of size $(n+1) \times(m+1)$ with zero-based indexing. Initially all the elements in the matrix $A_{i j}$ are assigned the value 0 for all $i \in[0, \cdots, n]$ and $j \in$ $[0, \cdots, m]$. Next you have k operations, each operation you are given 4 integers $x_{l}, y_{l}, w_{l}, h_{l}$ and your task is to perform increment by 1 for all $A_{i j}$ satisfying $i \in$ $\left[x_{l}, \cdots, x_{l}+w_{l}\right]$ and $j \in\left[y_{l}, \cdots, y_{l}+h_{l}\right]$.

The question for you is after finishing all the operations, answer the following 3 questions:

- Count the number of odd elements in the matrix?
- Find the smallest value of $j \times(n+1)+i$ that satisfy the condition that $A_{i j}$ is odd number?
- Find the largest value of $j \times(n+1)+i$ that satisfy the condition that $A_{i j}$ is odd number?

Input

The first line contains 3 integers n, m and $k .\left(0 \leq n, m \leq 10^{6}, 1 \leq k \leq 20\right)$.
Next k lines: each line contains 4 integers $x_{l}, y_{l}, w_{l}, h_{l}\left(0 \leq x_{l} \leq n, 0 \leq y_{l} \leq\right.$ $\left.m, 0 \leq w_{l} \leq n-x_{l}, 0 \leq h_{l} \leq m-y_{l}\right)$.

Output

Print out 3 intergers representing the answers. If the number of odd elements in the matrix is 0 , please print out " $0-1-1$ ".

Sample

Input	Output
221	201
0010	429
233	
00	23
0	10
1112	$0-1-1$
232	
0	023
0	023

