Problem G: Ribbon

Time limit: 1s; Memory limit: 256 MB

Jeremy has a long ribbon with N equal pieces. Each piece has an integer number, we can describe it by an array A of integers with length N. Jeremy want to split the ribbon into multiple segments with length equals to K (we can abort some pieces). Each segment has its own beautiful level B which equals the sum of all numbers inside.
For example: $A=[-3,1,-2,6,2,3]$ and $\mathrm{K}=2$. Jeremy can split the ribbon into $[[-3$, $1],[6,2]]$ or $[[-2,6],[2,3]]$ or $[[-3,1],[-2,6],[2,3]] \ldots$ not into $[[-3,1,-2],[2,3]]$ and [[-3,-2],[6,2]]...
After that, he sticks the above segments together (keep the ordinary) and colors them with black or white to create a ribbon of alternating colors (they should be compiled with one of these forms black-white-black-white-... or white-back-white-black-...).

When Jeremy split the original ribbon to Q parts. Each part has a beautiful level B_{j} $(1 \leq j \leq Q)$ and a color attribute M_{j} (the explanation below). The value L of the ribbon is described by following formula:

$$
L=\sum_{j=1}^{N} M_{j} \times B_{j}
$$

where, L is the value of the ribbon; B_{i} is the beautiful level of the i-th segment; and M_{i} equals to 1 (white segment) or -1 (black segment).

Determine the maximum value L of the ribbon.

Input

The first line of the input contains an integer $T(1 \leq T \leq 10)$ - the number of test cases in the input. The descriptions of the test cases follow.

The first line of description of each test case contains two integers N and $K(1 \leq \mathrm{K} \leq$ $\mathrm{N} \leq 2 \times 10^{5}$) - the length of ribbon and segment.

The second line of the description of each test case contains N integers A_{i} - numbers on the ribbon $\left(-10^{9} \leq A_{i} \leq 10^{9}\right)$.

Output

Output T numbers, each of which is the answer to the corresponding test case.

Sample

	Input	
3	3	Output
33		22
$-2-32$	10	
52		
$652-5-6$		
62		
$-31-2623$		

Explanation:

In the first test case, we can choose all elements of the array and color the second segment by black.

In the third test case, Jeremy can split it and get 2 segments [-3,1] and [6,2] (abort two pieces with value 2 and 3). Then he colors the first segment with black, second one with white. The answer is $-1 \times(-3+1)+1 \times(2+6)=10$.

-3	1	-2	6	2	3

