Problem E: Birthday Cake

Time limit: 1s; Memory limit: 256 MB

Bob is celebrating his birthday with his friends. During the party, Bob wants to cut the birthday cake and share it with his friends.
The birthday cake is a rectangle of size $\mathrm{R} \times \mathrm{C}$ made from a variety of materials. Let $\mathrm{a}[i][j]$ is the calories of the cell in i-th row and j-th column, total calories of a piece of cake are the sum of its cells.
There are n friends in the party. Because of the fear of obesity, they do not want to eat too much. Let $\mathrm{p}[k]$ is the maximum calories of k-th friend.
Bob wants to cut this cake $n-1$ times to obtain n smaller pieces which can be given to their friends. Bob must cut exactly $n-1$ times, according to the following rule:
$>$ During the l-th cut, Bob must cut the current (rectangular) piece of cake horizontally or vertically so that it results in two 2 smaller (rectangular) pieces, each piece must be of size at least 1×1.

- If the l-th cut was done horizontally, the upper piece must be given to the l-th friend, and the lower piece of cake must be used for the next cutting phase.
- If the l-th cut was done vertically, the left piece must be given to the l-th friend, and the right piece of cake must be used for the next cutting phase.
$>$ After $n-1$ cuts, there are exactly n pieces of cake to be given to n friends with no leftovers. The l-th piece of cake must satisfy the l-th friend's calorie condition, that is, total calories of the i-th piece of cake must not be greater than $\mathrm{p}[l]$.

For example: let $n=3, \mathrm{p}=[5,10,15]$ and the below birthday cake:

1	5
2	8

Method 1:	Before the horizontal cut		Before the vertical cut		The total calories of the pieces of cake are $[6,2,8]$. The first piece is not satisfied due to $6>5$.
	1	5	2	8	
	2	8			
	After		2	8	
	1	5			
	2	8			
Method 2:	Before the vertical cut		Before the horizontal cut		The total calories of the pieces are $[3,5,8]$ satisfying for n friends.
	1	5	5		
	2	8	8		
	After		After		
	1	5	5		
	2	8			
		,	8		

Given the calories of the cake and the maximum calories of n friends, please help Bob compute the number of different ways to cut the cake that meet all rules and satisfy all friends.

Input

The first line contains 3 integers R, C, and $n .(1 \leq \mathrm{R}, \mathrm{C} \leq 100,1 \leq \mathrm{n} \leq \min (10, \mathrm{R}+$ $\mathrm{C}-1)$).

The next R lines, each line contains C numbers, that is the calorie of the cell $\mathrm{a}[i][j]$. ($0 \leq \mathrm{a}[i][j] \leq 100$).

The next line contains n integers, the i-th integer is the maximum calories $\mathrm{p}[k]$ of the k-th friend. $\left(0 \leq \mathrm{p}[k] \leq 10^{6}\right)$.

Output

Output the number of different ways to cut the cake that meet all rules and satisfy all friends. Since the answer can be quite large, output the answer module $10^{9}+7$.

Sample

Input	Output
223	1
15	
28	
51015	3
332	
1086	
8410	
110	
7825	

