J. DOTS

Mika loves doodling in her notebook. Today, she's drawn N dots and connected them with $\mathrm{N}-1$ lines. These lines are drawn in a such a way that she can follow a path from one dot to another without having to lift her pencil.

The dots are numbered from 0 to $\mathrm{N}-1$. Mika wants to follow a path from dot 0 to some other dot without lifting her pencil. The path can contain a line more than once.

To make things challenging, she assigns N integers $E_{0}, E_{1}, E_{2}, \ldots E_{(N-1)}$ to each dot. For any dot i, she must ensure that her path does not leave that dot more than E_{i} times.

For each integer i from 0 to $\mathrm{N}-1$, determine the length of the longest path Mika can follow to get from dot 0 to dot i that satisfies the conditions above.

INPUT

The first line contains an integer $\mathrm{N}-$ the number of dots $(1 \leq \mathrm{N} \leq 50000)$.
The second line contains N integers $E_{0}, E_{1}, E_{2}, \ldots, E_{(n-1)}\left(1 \leq E_{i} \leq 40000\right)$, where E_{i} is the maximum number of times the path can leave dot i. It is guaranteed that E_{i} is greater than or equal to the number of lines that come out of dot i .

The next N-1 lines contain two integers U_{i} and $V_{i}\left(0 \leq U_{i}, V_{i} \leq N-1\right)$, indicating that there is a line between dots Ui and Vi.

OUTPUT

For each integer i from 0 to $\mathrm{N}-1$, print one line containing the length of the longest path that ends at dot i .

Sample Input	Sample Output
3	8
262	7
01	8
12	

