I. LIS

Leon is a hardworking student who spends his free time pondering over sequences of integers. Today, he is particularly interested in increasing sequences.
A subsequence is formed by removing zero or more elements from a sequence while retaining the order of the remaining elements. The longest increasing subsequence of a sequence is defined as the longest subsequence whose elements are strictly increasing. This subsequence may not necessarily be unique. For example, the longest increasing subsequence of the sequence $(1,2,4,3)$ can either be $(1,2,3)$ or $(1,2,4)$, and both subsequences have a length of 3 .

Leon gives you the following problem:
Given a sequence X, let Y be a subsequence of X. What is the longest possible length of Y such that the length of the longest increasing subsequence of Y does not exceed K ?

This problem was too easy for you, so Leon decides to ask you more questions. He starts by providing you with a starting sequence A which contains N integers. Then, he gives you Q questions. You are still going to solve the problem above, but sequence X and the integer K will vary between questions. He gives you the integer K directly, and he also gives you an integer M and says that sequence X is formed by taking the first M elements of sequence A.

For each question, provide the answer to the problem above for the given sequence X and the integer K .

INPUT

The first line contains two integers N and Q , where N is the number of elements in sequence A , and Q is the number of questions you must answer. $(1 \leq N \leq 50000,1 \leq \mathrm{Q} \leq 200000)$
The second line contains N integers $A_{1}, A_{2}, A_{3}, \ldots, A_{N}$ - the elements of sequence A. $\left(1 \leq A_{i} \leq 50000\right)$.
The next Q lines contain two integers M_{i} and K_{i}, meaning you must solve the problem above for the first M_{i} elements of A and the integer $\mathrm{K}_{\mathrm{i}}\left(1 \leq \mathrm{K}_{\mathrm{i}} \leq \mathrm{M}_{\mathrm{i}} \leq \mathrm{N}\right)$.

OUTPUT

For each question, print one line containing the answer.

泉 Sample Input	
116	4
963151284222	6
51	5
72	8
91	7
92	11
111	
1111	

EXPLAINATION

- Question 1: For the sequence $X=(9,6,3,1,5)$, one can choose the subsequence $\mathrm{Y}=(9,6,3,1)$. The length of the longest increasing subsequence of Y is 1 .
- Question 2: For the sequence $X=(9,6,3,1,5,12,8)$, one can choose the subsequence $Y=(9,6,3,1,12$, 8). The length of the longest increasing subsequence of Y is 2 .
- Question 3: For the sequence $\mathrm{X}=(9,6,3,1,5,12,8,4,2)$, one can choose the subsequence $\mathrm{Y}=(9,6,5,4$, 2). The length of the longest increasing subsequence of Y is 1 .
- Question 4: For the sequence $X=(9,6,3,1,5,12,8,4,2)$, one can choose the subsequence $Y=(9,6,3,1$, $12,8,4,2)$. The length of the longest increasing subsequence of Y is 2 .
- Question 5: For the sequence $X=(9,6,3,1,5,12,8,4,2,2,2)$, one can choose the subsequence $Y=(9,6$, $5,4,2,2,2)$. The length of the longest increasing subsequence of Y is 1 .
- Question 6: For the sequence $\mathrm{X}=(9,6,3,1,5,12,8,4,2,2,2)$, one can choose the subsequence $\mathrm{Y}=(9,6$, $3,1,5,12,8,4,2,2,2)$. The length of the longest increasing subsequence of Y is 3 .

