G. SONG

Thang is writing lyrics for his newly composed song. This time, he's come up with a criterion for writing lyrics. Let's denote string s (containing only lowercase alphabet letters) as the lyrics for the whole song. For each substring t, Thang defines:

- length (t) : the number of characters of t
- frequency (t) : the number of times t appears in s as a substring.
- $\operatorname{sum}(t)$: the sum of value across all characters of t. The value of each letter, in this case, is its alphabet order (${ }^{\prime} a^{\prime}=1, \ldots,{ }^{\prime} z^{\prime}=26$) .

Let's denote the set of unique substring of s as $U(s)$, Thang defines the beauty of lyrics s as:

$$
\operatorname{beauty}(s)=\sum_{t \in U(s)} \text { length }(t) \times \text { frequency }(t) \times \operatorname{sum}(t)
$$

You are to help Thang in composing his song. Thang is giving you a list of lyrics versions and you shall help him to calculate the beauty for each.

INPUT

The first line contains $T(T \leq 10)$, the number of lyrics versions you are to calculate their beauty.
The i-th line of the next T lines contains the i-th lyrics version of the song s_{i}.
It is guaranteed that $\sum\left|s_{i}\right| \leq 5 \times 10^{5}$.

OUTPUT

Your program should output T lines, the i-th line should contains a positive integer representing the beauty of s_{i} in modulo $10^{9}+7$.

Sample Input	Sample Output
2 ab aba	9
3	
thaychuathaychuaem cosaocosaodau toldyoutoldyouso	114760 32242

