E. FUNCTION

Consider the sequence f defined by the following recursive formula:

 $\begin{cases} f(0) = 1\\ f(2n) = f(n) + f(n-1) & \text{for all positive integers n} \\ f(2n+1) = f(n) & \text{for all non - negative integers n} \end{cases}$

Given two positive integers p and q, p, $q \le 10^4$. Find a non-negative integer n such that:

$$\frac{f(n)}{f(n+1)} = \frac{p}{q}$$

If there existed no value of n, print -1.

If there are multiple satisfied values of n, print the smallest one.

INPUT

Each line of the input consists of two numbers p and q.

OUTPUT

For each pair of p and q, print the result as described above in one line.

Sample Input	Sample Output
23	5
14	7
5 5	0

EXPLANATION

$$f(0) = 1, f(1) = 1, f(2) = 2, f(3) = 1, f(4) = 3, f(5) = 2, f(6) = 3, f(7) = 1, f(8) = 4$$