B. MOVE

You have a number \mathbf{m} , a starting number $\mathbf{s_0}$ and two sequences of numbers a_i and b_i . Your goal is to go from s_0 to 0 in as few moves as possible. In each move, you choose an i, then multiply your current number by a_i , add b_i to it, and reduce the result modulo m. That is

$$s_j = (s_{j-1} * a_{ij} + b_{ij}) \% m.$$

INPUT

The first line of input contains three integers $0 \le m \le 1000000$, $0 \le n \le 10$, and $0 \le s_0 \le m$. The next n lines each contain two integers, a pair $0 \le a_i \le 1000000000$ and $0 \le b_i \le 10000000000$.

OUTPUT

Output the shortest number of moves needed to reach 0 starting from s_0 . If it is not possible to reach 0 in any number of moves, output -1.

Sample Input	Sample Output
5 2 1	2
2 1	
3 1	