B. MOVE

You have a number \mathbf{m}, a starting number $\mathbf{s}_{\mathbf{0}}$ and two sequences of numbers a_{i} and b_{i}. Your goal is to go from s_{0} to 0 in as few moves as possible. In each move, you choose an i, then multiply your current number by a_{i}, add b_{i} to it, and reduce the result modulo m . That is
$\mathrm{s}_{\mathrm{j}}=\left(\mathrm{s}_{\mathrm{j}-1} * \mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}\right) \% \mathrm{~m}$.

INPUT

The first line of input contains three integers $0<\mathrm{m} \leq 1000000,0 \leq \mathrm{n} \leq 10$, and $0<\mathrm{s}_{0}<\mathrm{m}$. The next n lines each contain two integers, a pair $0 \leq \mathrm{a}_{\mathrm{i}} \leq 1000000000$ and $0 \leq \mathrm{b}_{\mathrm{i}} \leq 1000000000$.

OUTPUT

Output the shortest number of moves needed to reach 0 starting from s_{0}. If it is not possible to reach 0 in any number of moves, output -1 .

Sample Input	Sample Output
521	2
21	
31	

