Problem M
 Millionplex

We are quite familiar with some of the names of large numbers like: million $\left(10^{6}\right)$, billion $\left(10^{9}\right)$ or trillion $\left(10^{12}\right)$. But there are a lot more names which are unfamiliar, such as: quadrillion $\left(10^{15}\right)$, quintillion $\left(10^{18}\right)$, sextillion $\left(10^{21}\right)$, septillion $\left(10^{24}\right)$, octillion $\left(10^{27}\right)$, nonillion $\left(10^{30}\right)$, decillion $\left(10^{33}\right)$, undecillion $\left(10^{36}\right)$, duodecillion $\left(10^{39}\right)$, tredecillion $\left(10^{42}\right)$, quattuordecillion $\left(10^{45}\right)$, quindecillion $\left(10^{48}\right)$, sexdecillion $\left(10^{51}\right)$, septendecillion $\left(10^{54}\right)$, octodecillion $\left(10^{57}\right)$, novemdecillion (10^{60}), vigintillion (10^{63}), centillion (10^{303}), etc.

Learning more about larger numbers, John Horton Conway and Richard K. Guy have suggested that N-plex can be used as a name for 10^{N}. Thus, millionplex is a number which starts with a digit 1 followed by a million 0 s.

Hieu is fascinated by large numbers and researching about them. His work involves understanding positive integers up to a millionplex. Today, Hieu is calculating a function $f(n)$ which equals to the sum of squares of all its "subnumbers". A "subnumber" of a positive integer n is a number formed by a contiguous sequence of digits of n. In this problem, we only consider decimal representation of numbers.

For example: $f(2207)=2207^{2}+220^{2}+207^{2}+22^{2}+20^{2}+07^{2}+2^{2}+2^{2}+0^{2}+7^{2}=4963088$.
Given a positive integer up to a millionplex, your task is to calculate $f(n)$. Since this number could be rather large, you should calculate it modulo $10^{9}+7$.

Input

The input contains a single integer $n\left(1 \leq n \leq 10^{10^{6}}\right)$.

Output

Print a single integer - the value $f(n)$ modulo $10^{9}+7$.
Sample Input 1

Sample Output 1

2207	4963088

