

Problem M Millionplex

We are quite familiar with some of the names of large numbers like: million (10^6) , billion (10^9) or trillion (10^{12}) . But there are a lot more names which are unfamiliar, such as: quadrillion (10^{15}) , quintillion (10^{18}) , sextillion (10^{21}) , septillion (10^{24}) , octillion (10^{27}) , nonillion (10^{30}) , decillion (10^{33}) , undecillion (10^{36}) , duodecillion (10^{39}) , tredecillion (10^{42}) , quattuordecillion (10^{45}) , quindecillion (10^{48}) , sexdecillion (10^{51}) , septendecillion (10^{54}) , octodecillion (10^{57}) , novemdecillion (10^{60}) , vigintillion (10^{63}) , centillion (10^{303}) , etc.

Learning more about larger numbers, John Horton Conway and Richard K. Guy have suggested that N-plex can be used as a name for 10^N . Thus, millionplex is a number which starts with a digit 1 followed by a million 0s.

Hieu is fascinated by large numbers and researching about them. His work involves understanding positive integers up to a millionplex. Today, Hieu is calculating a function f(n) which equals to the sum of squares of all its "subnumbers". A "subnumber" of a positive integer n is a number formed by a *contiguous* sequence of digits of n. In this problem, we only consider decimal representation of numbers.

For example: $f(2207) = 2207^2 + 220^2 + 207^2 + 22^2 + 20^2 + 07^2 + 2^2 + 2^2 + 0^2 + 7^2 = 4963088$. Given a positive integer up to a millionplex, your task is to calculate f(n). Since this number could be rather large, you should calculate it modulo $10^9 + 7$.

Input

The input contains a single integer $n \ (1 \le n \le 10^{10^6})$.

Output

Print a single integer — the value f(n) modulo $10^9 + 7$.

Sample Input 1	Sample Output 1
2207	4963088