FPT University - 25 March 2022

Problem I
 ICPC Hardest Problem

Given a positive integer N with at most 10^{5} digits. Find a positive integer M such that:

- N is a substring of M^{2},
- M has at most $10^{5}+10$ digits.

An integer x is a substring of y if x appears in a contiguous subsequence of y. For example:

- 33 is a substring of 33 ,
- 34 is a substring of 1345 ,
- 14 is not a substring of 1234 .

Input

The input contains a single positive integer $N\left(1 \leq N<10^{10^{5}}\right)$.

Output

Output a single positive integer $M\left(1 \leq M<10^{10^{5}+10}\right)$ satisfying the given conditions.
Sample Input $1 \quad$ Sample Output 1
1

