



## Problem I ICPC Hardest Problem

Given a positive integer N with at most  $10^5$  digits. Find a positive integer M such that:

- N is a substring of  $M^2$ ,
- M has at most  $10^5 + 10$  digits.

An integer x is a substring of y if x appears in a contiguous subsequence of y. For example:

- 33 is a substring of 33,
- 34 is a substring of 1345,
- 14 is **not** a substring of 1234.

## Input

The input contains a single positive integer N  $(1 \le N < 10^{10^5})$ .

## Output

Output a single positive integer M  $(1 \le M < 10^{10^5+10})$  satisfying the given conditions.

| Sample Input 1 | Sample Output 1 |
|----------------|-----------------|
| 1              | 1               |