ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

Problem L
 Lucky Pair

A pair of positive integers (x, y) is considered a lucky pair iff there exists a positive integer k such that: $x^{k}+y^{k}$ is divisible by $x \cdot y$. For example:

- $(2,4)$ is a lucky pair because $2^{3}+4^{3}=8+64=72$ is divisible by $2 \cdot 4=8$;
- $(3,3)$ is a lucky pair because $3^{2}+3^{2}=9+9=18$ is divisible by $3 \cdot 3=9$;
- $(1,2)$ is not a lucky pair because $1^{k}+2^{k}$ is always odd for every $k>0$ and can not be divisible by $1 \cdot 2=2$.

You are given an array a containing n positive integers, your task is to count the number of pairs (i, j) so that $i<j$ and $\left(a_{i}, a_{j}\right)$ is a lucky pair.

Input

- The first line contains a single integer n - the length of the array $\left(2 \leq n \leq 3 \cdot 10^{5}\right)$.
- The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{7}\right)$ - the elements of the array.

Output

Write a single integer denoting the number of lucky pairs in the array a.

Sample Input $1 \quad$ Sample Output 1

6					1	
1	2	3	4	5	6	

Sample Input 2	Sample Output 2		
4			
7	7		
7	7	7	
:---	:---		

