
ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

Problem K K-query

You are given an array of balls. Each ball is either black or white. Initially, the array has n balls. You are about to proceed q queries one by one. In each query, let m be the number of balls in the array before the query happens and number the balls from 1 to m (inclusive). Each query is in one of the following forms:

- I $\mathrm{x} \mathrm{k} \subset\left(0 \leq x \leq m, 1 \leq k \leq 10^{9}, c\right.$ is B or W$)$: insert k balls of color c to the array, right after the x-th ball. More precisely:
- If $x=0$, balls are inserted at the beginning of the array.
- If $1 \leq x<m$, balls are inserted between the x-th and the $x+1$-th ball of the array.
- If $x=m$, balls are inserted at the end of the array.
- If c equals B, all inserted balls are black.
- If c equals W , all inserted balls are white.
- D $\mathrm{x} \mathrm{k}(1 \leq x \leq m, 1 \leq k \leq m-x+1)$: Delete k consecutive balls from the array, starting at the x-th one.
- F x k $(1 \leq x \leq m, 1 \leq k \leq m-x+1)$: Flip the color of k consecutive balls of the array starting at the x-th one. In other words, replace every black ball with a white one at the same position, and vice versa.
- Q $\mathrm{x} \mathrm{k}(1 \leq x \leq m, 1 \leq k \leq m-x+1)$: Consider only k consecutive balls of the array starting at the x-th one, divide them into a minimum number of segments so that every segment contains consecutive balls of the same color, and let $l_{1}, l_{2}, \ldots, l_{t}$ be the lengths of these segments. Compute and print the value $l_{1}^{2}+l_{2}^{2}+\ldots+l_{t}^{2}$. Note that the way to divide the balls is always unique.

Input

- The first line contains two integers n and $q(1 \leq n, q \leq 200000)$.
- The second line contains n characters B and W, denoting the color of the balls in the initial array.
- For the last q lines, each line contains a query as described above.

Output

For each query of the form $Q \times \mathrm{k}$, output its result in a line. As the result can be rather large, output it modulo 998244353.

ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

Explanation of the samples

For the first sample, the array is static:

- In the first query, the considered balls are wW. There is only one segment, the result is $2^{2}=4$.
- In the second query, the considered balls are wWBBWW. We devide these balls into three segments: 2 white balls, 2 black balls and 2 white balls. Hence, the result is $2^{2}+2^{2}+2^{2}=$ 12.

For the second sample:

- Initially, the array is BBWBB.
- In the first query, the considered balls are BWB. We divide these balls into three segments of one ball each. Hence, the result is $1^{2}+1^{2}+1^{2}=3$.
- After the second query, the array is BBBBBWBB.
- In the third query, the considered balls are BBBW. We divide these balls into two segments: the first one contains 3 black balls and the second one contains one white ball. Hence, the result is $3^{2}+1^{2}=10$.
- After the forth query, the array is BBBWWBBB.
- In the fifth query, the considered balls are WW. Since all balls are white, we can put them into one segment. Hence, the result is $2^{2}=4$.
- After the sixth query, the array is BBBBBB.
- In the seventh query, we consider the whole array. Since all balls are black, we can put them into one segment. Hence, the result is $6^{2}=36$.

Sample Input 1

Sample Output 1

$\left.\begin{array}{|l|l|}\hline 8 & 2 \\ \text { WWWBBWWW } & 4 \\ Q & 1 \\ \text { Q } 2 & 6\end{array}\right] 12$

Sample Input 2

Sample Output 2

5	7	3
BBWBB	10	
Q	2	3
I	0	3
B B	4	4
F	4	3
Q	4	2
D	4	2
Q	1	6

