

Problem H Hallway Tiling

Last year, the campus of FPT University was used as an isolation facility for COVID-19 patients. Now, the daily new cases have dropped significantly and the campus has been transformed back to a normal university environment. The university decided to re-tile their hallway.

The hallway of FPT university is a rectangle shape of size $r \cdot n$, this hallway will be re-tiled using $1 \cdot 2$ ceramic tiles. In this hallway, there are k positions which are pillars so we will not re-tile these positions.

Your task is to count the number of possible ways to re-tile the hallway.

Input

- The first line of the input consists of 3 integers r, n and k ($1 \le r \le 6, 1 \le n \le 10^{12}, 0 \le k \le 10$).
- Then k lines follows. Each contains 2 integers x and y describing the position of a pillar (1 ≤ x ≤ r, 1 ≤ y ≤ n). No 2 pillars are in the same position.

Output

Print a single integer denoting the number of possible ways to re-tile this hallway. Since this number could be large, you should print it modulo $10^9 + 7$.

Explanation of the sample

There are 2 ways to re-tile the hallway:

Sample Input 1	Sample Output 1
3 4 2	2
2 2	
2 3	