
ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

Problem D
 Distinctive Tours

The city of Hanoi has n sightseeing spots, which are numbered from 1 to n, inclusive. There are m two-way roads connecting these spots. These roads form a simple graph: no two roads connect the same pairs of spots, and no road connects a spot to itself.

Each road is decorated with a different type of tree. Hanh is a tree-lover and he wants to create a set of k tours which satisfy:

- Each tour is a cycle of length $t(t>2)$ that passes through t sightseeing spots $p_{1}, p_{2}, \cdots, p_{t}$. More precisely,
- for all i that $1 \leq i \leq t-1, p_{i}$ and p_{i+1} must be directly connected by some road;
- p_{t} and p_{1} must also be directly connected by some road;
- all p_{i} are pair-wise distinct.
- Each tour must have at least one road which does not belong to any of the other $k-1$ tours.

Hanh realizes that it might not be possible to create such a set using the current road network. Therefore, he wants to add some two-way roads so that:

- The new set of roads (including the added and the original ones) still form a simple graph: no two roads connect the same pairs of spots, and no road connects a spot to itself.
- The number of added roads should be minimal.

Your task is to help Hanh add new roads and create a k-tour set.

Input

- The first line contains three integers n, m and $k\left(3 \leq n \leq 50,0 \leq m \leq \frac{n \cdot(n-1)}{2}, 0 \leq k \leq\right.$ 2000).
- In the next m lines, each contains two integers u and $v(1 \leq u, v \leq n)$ meaning that initally there is a road connecting two spots u and v. It is guaranteed that these m roads form a simple graph.

Output

If it is impossible to create a k-tour set no matter how Hanh adds new roads, print a single line containing the word NO. Otherwise:

- The first line contains the word YES.
- The second line contains a single integer w - the minimal number of added roads.
- In the next w lines, each contains two integers x and $y(1 \leq x, y \leq n)$ meaning that a road connecting two spots x and y should be added.

ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

- In the last k lines, each describes a tour in the below format:
- The first integer is t - the number of spots of the tour.
- The last t integers are $p_{1}, p_{2}, \ldots, p_{t}$ - the spots of the tour.

If there are multiple optimal solutions, you can output any of them.

Explanation of the samples

The figures below shows the first sample.

- On the left, the original roads are represented by solid segments, the added roads are represented by dashed segments.
- On the right, there are 3 tours: red, blue and orange. Roads are colored with tours that used them. You can see that each tour has one road that does not belong to the other tours: $(2,3)$ for red, $(2,4)$ for blue and $(3,4)$ for orange.

In the second sample, the current roads form a complete graph, so you can not add any roads. You can only create 1 tour using all these current roads.

Sample Input 1

Sample Output 1

4	4	3			
1	2	YES			
1	3	2			
1	4	2	3		
2	4	3	4		
3	1	2	3		
3	1	2	4		
3	1	3	4		

Sample Input 2

Sample Output 2

3	3	3
1	2	No
1	3	
2	3	

