ICPC Asia - Vietnam National Contest

Problem C Congruent Triangles

In geometry, two triangles are considered congruent iff they have exactly the same size and shape. In other words, all pairs of corresponding interior angles are equal in measure, and all pairs of corresponding sides have the same length. More formally, triangle $A B C$ is congruent to triangle $D E F$, mathematically written as $\triangle A B C \cong \triangle D E F$, if and only if all six below statements are true:

- $A B=D E$
- $B C=E F$
- $C A=F D$
- $\angle A B C=\angle D E F$
- $\angle B C A=\angle E F D$
- $\angle C A B=\angle F D E$

Note that while stating congruence of triangles, the order of vertices matters. For example, by stating $\triangle A B C \cong \triangle D E F$, we means that the side $A B$ corresponds to the side $D E$, the angle $\angle B C A$ corresponds to the angle $\angle E F D, \ldots$ Therefore, in the below figure, two statements $\triangle A B C \cong \triangle D E F$ and $\triangle A C B \cong \triangle D F E$ are true; while $\triangle A B C \cong \triangle F E D$ is false since $A B \neq F E$.

In this problem, you are given n points on the Cartesian plane, denoted as $P_{1}, P_{2}, \ldots, P_{n}$. The coordiates of point P_{k} is $\left(x_{k}, y_{k}\right)$. You are about to count the number of pairs of congruent triangles, whose vertices are 6 distinct points among the given ones.

Formally, you should count the number of tuples of indices $\left(i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}\right)$ satisfying all the below conditions:

- $1 \leq i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3} \leq n$
- $i_{1}<i_{2}<i_{3}$
- 6 indices $i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}$ are pairwise distinct.
- Triangle $P_{i_{1}} P_{i_{2}} P_{i_{3}}$ is non-degenerate (in other words, it has positive area).
- $\triangle P_{i_{1}} P_{i_{2}} P_{i_{3}} \cong \triangle P_{j_{1}} P_{j_{2}} P_{j_{3}}$

ICPC Asia - Vietnam National Contest
FPT University - 20 February 2022

Input

The first line contains a single integer $n(6 \leq n \leq 100)$ - denoting the number of given points.

Among the last n lines, the k-th one contains two integers x_{k} and $y_{k}\left(0 \leq\left|x_{k}\right|,\left|y_{k}\right| \leq 10^{9}\right)$ denoting the coordinates of point P_{k}.

It is guaranteed that all given points are pairwise distinct.

Output

Print a single integer - the number of tuples satisfying all the above conditions.

Explanation of the sample

The below figure demonstrates the above sample. The 4 valid tuples are:

- $(1,2,3,4,5,6)$
- $(1,2,3,4,6,5)$
- $(4,5,6,1,2,3)$
- $(4,5,6,1,3,2)$

Sample Input 1	Sample Output 1
6	
2	2
4	6
6	2
14	8
10	6
14	4

