Problem O: Wood Game

Time limit: 2s; Memory limit: 512 MB

Quang and Tung are now working at a wood factory. The factory's electrical power system has N single outlets, each of them is either negative (-) or positive (+) type. In the factory there is a cut-and-union machine C with two electrical jacks A and B . Inside the machine, a wood panel of size $X \times Y$ are waiting to be solved (X and Y are odd numbers). If A and B are in the different types of outlet (i.e -+ or +-), C will work as a cut machine: In one step, it can cut a panel into two panels such that they are both rectangles with integer sides' length (the positions and directions of panels are kept). If A and B are in the same type of outlet (.i.e ++ or --), C will work as an union machine: In one step, it can union two neighbor panels into a panel such that the panel is a rectangle (the positions and directions of panels are kept).

As world finalists, Quang and Tung usually have different views about a unique problem. They can't reach an agreement on how to use the machine. There are K steps that applied to the panel, but now Quang and Tung stop working because of disagreement. Instead of hit/kick the others, they decided to play a game to avoid the conflict:

- They draw m directed edges, each of them connects two outlets such that there is no cycle (.i.e outlets and edges form a Directed Acyclic Graph)
- Initialize, jack A is in a-th outlet, jack B is in b-th outlet, the panel was applied by K steps before starting the game.
- They play in alternate turns. Quang plays first.
- In one turn, player can choose one of three action:
- Move jack A down to a new outlet (i.e they can move jack A from u th outlet to v-th outlet if (u, v) is an edge)
- Move jack B up to a new outlet (.i.e they can move jack B from v-th outlet to u-th outlet if (u, v) is an edge)
- Use machine C to apply a legal step to the panel
- The one who can't make a legal turn loses the game.
- Quang wonders if he can win the game or not, if they are both intelligent. Please help him.

Input

- First line contains an integer T is the number of test cases. Each test case is described in some lines.
- First line contains 4 integers $N, M, a, b \quad\left(1 \leq a, b \leq N \leq 10^{5} ; 0 \leq M \leq\right.$ 10^{5}).
- The second line contains a string of length N, the i-th character is either + or - describe the type of i-th outlet.
- Each of next M lines contains 2 integers u, v means they draw an edge from u to $v(1 \leq u, v \leq N)$. It is guaranteed that there are no cycles.
- The next line contains 3 integers $X, Y, K\left(0 \leq K \leq 10^{5} ; 1 \leq X, Y \leq 10^{5} ; X Y\right.$ are odd numbers)
- The i-th line of next K lines contains 5 integers t, u, v, p, q describes the i step that applied to the panel:
- If $t=0$ then this is a cut step, if $t=1$ then this is an union step
- Numbered all integer points on the panel from $(0,0)$ to (x, y). The machine cut/union from point (u, v) to point (p, q)
- It is guaranteed that interval from (u, v) to (p, q) is parallel with at least one panel's side, and this is a legal step

The sum of N, the sum of M and the sum of K over all test cases are at most 10^{5}

Output

Print T lines, the i-th one is YES or NO corresponding Quang can win the game in the i-th test case or not.

Sample:

Input	Output
1	YES
5422	
+-+-+	
12	
23	
34	
45	
123	
00111	
10111	
00111	

