Problem J: Manganese Dioxide

Time limit: 5s; Memory limit: 512 MB

Manganese Dioxide (chemical formula MnO_{2}) is a blackish or brown solid. Although looking harsh, its properties are wonderful and popularly used in batteries. Similarly, this problem may look difficult, but its solution contains beautiful insights. Let's see if it's true!

Given an array of integers $a_{1}, a_{2}, \ldots, a_{n}$, and an integer k. For every $i=1,2, \ldots, k$, calculate the sum of their i-th powers: $f(i)=a_{1}^{i}+a_{2}^{i}+\cdots+a_{n}^{i}$.

Input:

The first line contains two natural numbers, $n, k\left(1 \leq n \leq 10^{5}, 1 \leq k \leq 10^{5}\right)$
The second line contains n real numbers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<998244353\right)$.

Output:

Print k lines, containing $f(1), f(2), \ldots, f(k)$, each on one line. Since they may be too big, print them after taking modulo 998244353.

Sample:

Input	Output
33	6
123	14
45	36
875358085026	6456
	26207334
	864427735
	110742109
992865564	

Explanation:

In sample $1,1+2+3=6,1^{2}+2^{2}+3^{2}=14,1^{3}+2^{3}+3^{3}=36$
Bonus: Find out what MnO_{2} facts that correspond to numbers in sample 2. Good luck!

