Problem E: Convex Quadrilateral

Time limit: 1s; Memory limit: 512 MB
A quadrilateral is a polygon in Euclidean plane geometry with four edges and four vertices. Quadrilaterals are either simple (not self-intersecting), or complex (selfintersecting, or crossed). Simple quadrilaterals are either convex or concave. This problem focuses on convex quadrilateral. A convex quadrilateral is a quadrilateral which has all interior angles less than 180 degrees and all the diagonals lie within the quadrilateral.

Figure 1. Left quadrilateral is a convex quadrilateral and right quadrilateral is not a convex quadrilateral
Given 4 points in 2D space, can they be the 4 vertices of a convex quadrilateral?

Input

- Each test contains several test cases. The first line contains one integer number t $(1 \leq t \leq 100)$ - the number of test cases..
- The first line of each case contains 8 integers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}\left(-10^{9} \leq x_{i}, y_{i} \leq\right.$ 10^{9}) - coordinates of 4 points.

Output

- For each test case, print "YES" if these point are the 4 vertices of a convex quadrilateral and "NO" otherwise.

Sample

Input								Output	
2	0		4	3	5	2	YES		
1	0	0	4	2	2	5	2	NO	

