

Problem D: Image Filtering

Time limit: 3s; Memory limit: 512 MB

In computer vision, image filtering a technique used to change the appearance of an image by altering the colors of the pixels. Hung is a student of data science and artificial intelligence course of DUT. He is very interesting with following filtering method:

Given an image A of size $h \times w$. Each pixel of A has a

brightness level of $a_{i,j}$ $(1 \le i \le h \text{ and } 1 \le j \le w)$. Hung uses a filter **L** which is a matrix of intergers $l_{x,y}$ of size $X \times Y$ $(1 \le x \le X, 1 \le y \le Y)$ and X, Y are odd numbers. The output of the method is a image **B** of the same size as **A** and whose pixels' brightness level b_{ij} are calculated by the following formula:

$$b_{ij} = \sum_{x=1}^{X} \sum_{y=1}^{Y} l_{x,y} \times a_{i+x-\left[\frac{X+1}{2}\right], j+y-\left[\frac{Y+1}{2}\right]}$$

Note, if *i* or *j* do not satisfy the condition $1 \le i \le h$ and $1 \le j \le w$ then $a_{i,j}$ is considered equal to 0. [*] represents the formula to round up. Please help Hung to implement the program using the above method.

Input

- The first line contains 4 natural numbers *h*, *w*, X and Y $(1 \le h \times w \le 5 \times 10^5, 1 \le X \le h, 1 \le Y \le w \text{ and } X, Y \text{ are odd numbers}).$

- Next *h* lines are brightness level $a_{i,j}$ of image **A** ($0 \le a_{i,j} \le 5 \times 10^5$).

- Next *X* lines are matrix of intergers $l_{x,y}$ of filter **L** ($0 \le l_{i,j} \le 5 \times 10^5$).

Output

- Print brightness level $b_{i,j}$ of image **B**.

Input	Output
3 3 3 3	12 21 16
1 2 3	27 45 33
4 5 6	24 39 28
7 8 9	
1 1 1	
1 1 1	
1 1 1	
3 3 1 3	4 8 8
1 2 3	13 20 17
4 5 6	22 32 26
7 8 9	
1 2 1	

Sample