Problem C: Copper Hydroxide

Time limit: 2s; Memory limit: 512 MB

Copper Hydroxide (chemical formula $\mathrm{Cu}(\mathrm{OH})_{2}$) is a pale greenish blue or bluish green solid. It is a beautiful strong base, as this problem is for strong and beautiful coders. Let's prove it!

Given a vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in \mathbb{R}^{n}. A vector $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is nonincreasing if and only if $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$.

The Euclide distance between two vectors a, b is calculated as

$$
d(a, b)=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}}
$$

Find a non-decreasing vector b in \mathbb{R}^{n} such that $d(a, b)$ is minimized.

Input

The first line contains a natural number, $n\left(1 \leq n \leq 10^{6}\right)$
The second line contains n real numbers $a_{1}, a_{2}, \ldots, a_{n}\left(\left|a_{i}\right| \leq 10^{5}\right)$. Each of them has at most 3 decimal digits in the input.

Output

Print one real number, which is the min $d(a, b)$, for all non-increasing vector b. The answer is accepted if the absolute error or relative error does not exceed 10^{-6}.

Sample

Input	Output
3	0
112	12.41750218
4	
3.36897 .56180353	

Explanation

In sample $1, a=(1,1,2)$, which is already non-decreasing. We choose $b=(1,1,2)$ then $d(a, b)=0$.

In sample 2 , we choose $b=(3.368,88.7805,88.7805,353)$. Then, $d(a, b)=$ $\sqrt{0+(97.561-88.7805)^{2}+(80-88.7805)^{2}+0}=12.41750218 \ldots$

Bonus: Find out what $\mathrm{Cu}(\mathrm{OH})_{2}$ facts that correspond to numbers in sample 2 .
Good luck!

