Problem I
 Inversion Number

Time limit: 1 second
Mem limit: $\mathbf{2 5 6}$ Megabytes
You are given an array of n integers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$, which is a permutation of n numbers from 1 to n. An inversion number of an array is the number of inversions, i.e. pairs (i, j) that satisfy the condition $1 \leq i<j \leq n$ and $a_{i}>a_{j}$.

You are allowed to perform a transformation on the array as follows:

- You pick an integer x that has value in range 1 to n.
- All the elements that are less than x will be moved to the left of x and all the elements that are greater than x will be moved to the right of x.
- The order of the elements that are less than x and the order of elements that are greater than x have to be the same after the transformation.

For example, given an array of $[6,2,3,5,1,4]$ and you pick $x=4$. After the transformation, the array will be $[2,2,1,4,6,5]$ and it has three inversions. However, if you pick $x=5$, then the array will be $[2,3,1,4,5,6]$ and it has only two inversions.

Task: Find the minimum inversion number of the array after your transformation.

Input

The first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$ - the number of elements in the array.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$ - the array itself.

Output

The minimum inversion number.

Sample input

Sample output

6				2
623514				

