Lexigraphical Matrix

Problem ID: lexmatrix
 Time limit: 1 second

A Lex Matrix is a matrix of size $m \times n, m$ rows, n columns. Rows are numbered from 1 to m, top to bottom. Columns are numbered from 1 to n, left to right. $A_{x, y}$ is the y-th value on row x. Each row is a permutation of $1,2, \ldots, n$.

Lex Matrix A is considered greater than Lex Matrix B if compare each cell starting from the first row, left to right then to the next row and so on, the first pair of cells (i, j) where $A_{i, j} \neq B_{i, j}, A_{i, j}>B_{i, j}$ hold.

Given a Lex Matrix A, You are allowed to pick 2 rows/columns, swap them and repeat by picking again as many times as you want, modify to achieve the greatest possible Lex Matrix from A. Let's call this maximal matrix A^{\prime}. Given q pairs of number x_{i} and $y_{i}\left(1 \leq x_{i} \leq m, 1 \leq y_{i} \leq n\right)$, find the value of $A_{x_{i}, y_{i}}^{\prime}$.

Input

The first line of input contains 2 integers m and $n(1 \leq m, n \leq 500)$.
The next m lines, representing Lex Matrix A, each contains n numbers, a permutation of $1,2, \ldots, n$.
The next line contains one integer $q(1 \leq q \leq 10000)$.
The next q lines, each contains 2 integers x_{i} and $y_{i}\left(1 \leq x_{i} \leq m, 1 \leq y_{i} \leq n\right)$.

Output

Output q lines, each contains one integer, the value of $A_{x_{i}, y_{i}}^{\prime}$.

Sample Input 1	Sample Output 1	
2	3	3
1	2	3
1	2	3
2		1
1	1	
2	3	

